摘要:
A data processing system includes a plurality of processing units, including at least a local master and a local hub, which are coupled for communication via a communication link. The local master includes a master capable of initiating an operation, a snooper capable of receiving an operation, and interconnect logic coupled to a communication link coupling the local master to the local hub. The interconnect logic includes request logic that synchronizes internal transmission of a request of the master to the snooper with transmission, via the communication link, of the request to the local hub.
摘要:
A data processing system includes a plurality of processing units, including at least a local master and a local hub, which are coupled for communication via a communication link. The local master includes a master capable of initiating an operation, a snooper capable of receiving an operation, and interconnect logic coupled to a communication link coupling the local master to the local hub. The interconnect logic includes request logic that synchronizes internal transmission of a request of the master to the snooper with transmission, via the communication link, of the request to the local hub.
摘要:
A data processing system includes a plurality of processing units, including at least a local master and a local hub, which are coupled for communication via a communication link. The local master includes a master capable of initiating an operation, a snooper capable of receiving an operation, and interconnect logic coupled to a communication link coupling the local master to the local hub. The interconnect logic includes request logic that synchronizes internal transmission of a request of the master to the snooper with transmission, via the communication link, of the request to the local hub.
摘要:
A data processing system includes a first plane including a first plurality of processing nodes, each including multiple processing units, and a second plane including a second plurality of processing nodes, each including multiple processing units. The data processing system also includes a plurality of point-to-point first tier links. Each of the first plurality and second plurality of processing nodes includes one or more first tier links among the plurality of first tier links, where the first tier link(s) within each processing node connect a pair of processing units in the same processing node for communication. The data processing system further includes a plurality of point-to-point second tier links. At least a first of the plurality of second tier links connects processing units in different ones of the first plurality of processing nodes, at least a second of the plurality of second tier links connects processing units in different ones of the second plurality of processing nodes, and at least a third of the plurality of second tier links connects a processing unit in the first plane to a processing unit in the second plane.
摘要:
A data processing system includes a first plane including a first plurality of processing nodes, each including multiple processing units, and a second plane including a second plurality of processing nodes, each including multiple processing units. The data processing system also includes a plurality of point-to-point first tier links. Each of the first plurality and second plurality of processing nodes includes one or more first tier links among the plurality of first tier links, where the first tier link(s) within each processing node connect a pair of processing units in the same processing node for communication. The data processing system further includes a plurality of point-to-point second tier links. At least a first of the plurality of second tier links connects processing units in different ones of the first plurality of processing nodes, at least a second of the plurality of second tier links connects processing units in different ones of the second plurality of processing nodes, and at least a third of the plurality of second tier links connects a processing unit in the first plane to a processing unit in the second plane.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. A “stall/reorder unit” in a cache receives a snoop request from an interconnect. Information, such as the address, of the snoop request is stored in a queue of the stall/reorder unit. The stall/reorder unit forwards the snoop request to a selector which also receives a request from a processor. An arbitration mechanism selects either the snoop request or the request from the processor. If the snoop request is denied by the arbitration mechanism, information, e.g., address, about the snoop request may be maintained in the stall/reorder unit. The request may be later resent to the selector. This process may be repeated up to “n” clock cycles. By providing the snoop request additional opportunities (n clock cycles) to be accepted by the arbitration mechanism, fewer snoop requests may ultimately be denied.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. A “stall/reorder unit” in a cache receives a snoop request from an interconnect. Information, such as the address, of the snoop request is stored in a queue of the stall/reorder unit. The stall/reorder unit forwards the snoop request to a selector which also receives a request from a processor. An arbitration mechanism selects either the snoop request or the request from the processor. If the snoop request is denied by the arbitration mechanism, information, e.g., address, about the snoop request may be maintained in the stall/reorder unit. The request may be later resent to the selector. This process may be repeated up to “n” clock cycles. By providing the snoop request additional opportunities (n clock cycles) to be accepted by the arbitration mechanism, fewer snoop requests may ultimately be denied.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. A “stall/reorder unit” in a cache receives a snoop request from an interconnect. Information, such as the address, of the snoop request is stored in a queue of the stall/reorder unit. The stall/reorder unit forwards the snoop request to a selector which also receives a request from a processor. An arbitration mechanism selects either the snoop request or the request from the processor. If the snoop request is denied by the arbitration mechanism, information, e.g., address, about the snoop request may be maintained in the stall/reorder unit. The request may be later resent to the selector. This process may be repeated up to “n” clock cycles. By providing the snoop request additional opportunities (n clock cycles) to be accepted by the arbitration mechanism, fewer snoop requests may ultimately be denied.
摘要:
According to a method of data processing, a predictor is maintained that indicates a historical scope of broadcast for one or more previous operations transmitted on an interconnect of a data processing system. A scope of broadcast of a subsequent operation is predictively selected by reference to the predictor.
摘要:
In a data processing system, a plurality of agents communicate operations therebetween. Each operation includes a request and a combined response representing a system-wide response to the request. Within data storage in the data processing system, a data structure indicates a duration of a protection window extension for each of the plurality of agents. Each protection window extension is a period following receipt of a combined response during which an associated one of the plurality of agents protects transfer of coherency ownership of a data granule between agents. Each of the plurality of agents is configured with a duration of a protection window extension by reference to the data structure, and at least two of the agents have protection window extensions of differing durations. The plurality of agents thereafter employ the configured protection window extensions.