Abstract:
The invention relates to a computer-implemented medical data processing method for determining a mapping of medical image content into a reference system, the method comprising executing, on a processor of a computer, steps of: a) acquiring, at the processor, medical image data describing a digital medical image of an anatomical structure of a patient's body; b) acquiring, at the processor, image attribute data describing attribute information associated with the medical image data, the attribute information including an indication of an initial reference system in which spatial relationships of the digital medical image are defined; c) acquiring, at the processor, reference system transformation data describing a spatial relationship (REG) between the initial reference system and a second reference system which is different from the initial reference system; d) determining, by the processor and based on the medical image data and the reference system transformation data, transformed image data describing a representation of the digital medical image in the second reference system.
Abstract:
During a sEEG (stereo-electroencephalography) intervention into the skull of a patient, there is requirement to drill a large number of trajectories. Typically, instrument stabilisation platforms and robots for protocols requiring only one or two trajectories are rigidly fixed to the skull using surgical anchor members fixed into the skull around the one or two trajectories. However, because sEEG interventions require a large number of trajectories, an impractical number of surgical anchor members need to be fixed into the skull resulting in patient discomfort. Attachment of an intervention platform to all surgical anchor members is not required at once. Accordingly, it is proposed to search for intersection points of the maximum extent of an intervention platform between at least two trajectory entry points on an object of interest of patient, so that at least one surgical anchor member can be shared when the intersection point is at first and the second trajectories. Any reduction in the number of surgical anchor members inserted into a patient reduces risk and discomfort. The positioning of the shared anchor members can be optimised to enable good mechanical stability, and/or optical registration performance. Furthermore, the number of surgical anchor members required for intervention can be reduced. Because the surgical anchor members are sterilised and made from high quality metal, a cost for performing the procedure can also be reduced.
Abstract:
A data processing method for registering patient data containing normal patient data and specific object data to atlas data not containing this specific object data, the method comprising the following steps performed by a computer: a) acquiring the patient data which comprises anatomical information of the patient including normal patient data and the specific object data of the patient; b) segmenting the specific object data in the patient data; c) acquiring atlas data; d) acquiring meta-information about components of the atlas data; e) performing a fusion of the acquired patient data excluding the segmented specific object data and the atlas data to obtain registered atlas data; and f) simulating the growth of a simulated specific object within the registered atlas data using the registered atlas data and the meta-information about components of the atlas data being adjacent to the area of the specific object to obtain registered atlas data containing a simulated grown specific object.
Abstract:
During a sEEG (stereo-electroencephalography) intervention into the skull of a patient, there is requirement to drill a large number of trajectories. Typically, instrument stabilisation platforms and robots for protocols requiring only one or two trajectories are rigidly fixed to the skull using surgical anchor members fixed into the skull around the one or two trajectories. However, because sEEG interventions require a large number of trajectories, an impractical number of surgical anchor members need to be fixed into the skull resulting in patient discomfort. Attachment of an intervention platform to all surgical anchor members is not required at once. Accordingly, it is proposed to search for intersection points of the maximum extent of an intervention platform between at least two trajectory entry points on an object of interest of patient, so that at least one surgical anchor member can be shared when the intersection point is at first and the second trajectories. Any reduction in the number of surgical anchor members inserted into a patient reduces risk and discomfort. The positioning of the shared anchor members can be optimised to enable good mechanical stability, and/or optical registration performance. Furthermore, the number of surgical anchor members required for intervention can be reduced. Because the surgical anchor members are sterilised and made from high quality metal, a cost for performing the procedure can also be reduced.
Abstract:
1. A medical data processing method of determining information describing the probable position of a neural fiber in a patient's brain, the method comprising the following steps which are constituted to be executed by a computer: a) acquiring patient-specific medical image data describing the brain of the patient; b) acquiring atlas data defining an image-based model of a human brain; c) determining, based on the patient-specific medical image data and the atlas data, seed region data describing seed regions (A, B) in the patient-specific medical image data in which the ends of neural fibers of the patient's brain may be located; d) determining, based on the patient-specific medical image data and the seed region data, neural fiber tract data describing a plurality of potential tracts (T1, T2, T3) which a specific neural fiber may take through the patient's brain; e) determining, based on the atlas data and the neural fiber tract data, a figure of merit for each one of the potential tracts (T1, T2, T3).
Abstract:
A computer implemented method of matching a medical images of an anatomical structure of a patient's body with an atlas-based representation of the anatomical structure is described. The method includes acquiring patient image data; determining, based on the patient image data, patient substructure data; acquiring general substructure data; determining, for each of the patient substructures and based on the patient substructure data and the general substructure data, substructure matching data; determining, based on the general substructure data and the substructure matching data, anatomical structure atlas data; determining, based on the patient image data and the anatomical structure atlas data, matching transformation data describing an atlas-patient matching transformation between the medical image representation of the anatomical structure and the atlas representation of the anatomical structure.
Abstract:
A computer implemented method of matching a medical images of an anatomical structure of a patient's body with an atlas-based representation of the anatomical structure is described. The method includes acquiring patient image data describing a medical image representation of the anatomical structure in the medical image; determining, based on the patient image data, patient substructure data describing a plurality of patient substructure representations each describing a different patient substructure of the anatomical structure; acquiring general substructure data describing a general substructure representation of each of a plurality of general substructures for each of the patient substructures; determining, for each of the patient substructures and based on the patient substructure data and the general substructure data, substructure matching data describing a matching general substructure representation which matches the respective patient substructure representation; determining, based on the general substructure data and the substructure matching data, anatomical structure atlas data describing an atlas representation of the anatomical structure; determining, based on the patient image data and the anatomical structure atlas data, matching transformation data describing an atlas-patient matching transformation between the medical image representation of the anatomical structure and the atlas representation of the anatomical structure.