摘要:
A media access control (MAC) layer controller can manage base layer data and enhancement layer data in a layered modulation system. The MAC layer controller can process both base layer data and enhancement layer data and map the encoded symbols to a layered modulation constellation when both are present. If data for one of the layers terminates, then the MAC layer controller can generate and supply predetermined stuffing data to the layer lacking additional data. The MAC layer controller can send a control signal to the physical layer hardware to cause the hardware to map the layered signals having the stuffing data to a modified signal constellation. The MAC controller can also generate an overhead message that indicates the occurrence of the stuffing data. The receiver can receive the overhead message and can use the information to configure the receiver for the layered modulation constellation or the modified signal constellation.
摘要:
A media access control (MAC) layer controller can manage base layer data and enhancement layer data in a layered modulation system. The MAC layer controller can process both base layer data and enhancement layer data and map the encoded symbols to a layered modulation constellation when both are present. If data for one of the layers terminates, then the MAC layer controller can generate and supply predetermined stuffing data to the layer lacking additional data. The MAC layer controller can send a control signal to the physical layer hardware to cause the hardware to map the layered signals having the stuffing data to a modified signal constellation. The MAC controller can also generate an overhead message that indicates the occurrence of the stuffing data. The receiver can receive the overhead message and can use the information to configure the receiver for the layered modulation constellation or the modified signal constellation.
摘要:
A media access control (MAC) layer controller can manage base layer data and enhancement layer data in a layered modulation system. The MAC layer controller can process both base layer data and enhancement layer data and map the encoded symbols to a layered modulation constellation when both are present. If data for one of the layers terminates, then the MAC layer controller can generate and supply predetermined stuffing data to the layer lacking additional data. The MAC layer controller can send a control signal to the physical layer hardware to cause the hardware to map the layered signals having the stuffing data to a modified signal constellation. The MAC controller can also generate an overhead message that indicates the occurrence of the stuffing data. The receiver can receive the overhead message and can use the information to configure the receiver for the layered modulation constellation or the modified signal constellation.
摘要:
A media access control (MAC) layer controller can manage base layer data and enhancement layer data in a layered modulation system. The MAC layer controller can process both base layer data and enhancement layer data and map the encoded symbols to a layered modulation constellation when both are present. If data for one of the layers terminates, then the MAC layer controller can generate and supply predetermined stuffing data to the layer lacking additional data. The MAC layer controller can send a control signal to the physical layer hardware to cause the hardware to map the layered signals having the stuffing data to a modified signal constellation. The MAC controller can also generate an overhead message that indicates the occurrence of the stuffing data. The receiver can receive the overhead message and can use the information to configure the receiver for the layered modulation constellation or the modified signal constellation.
摘要:
Systems and methods are provided for processing forward link only (FLO) signals. A device receives a FLO signal, processes a TDM pilot comprising a TDM Pilot 1, a TDM Pilot 2, a WIC, a LIC, a Transition Pilot Channel, and a Positioning Pilot, from the FLO signal, processes an overhead information symbol (OIS) comprising a wide-area OIS and a local-area OIS, from the FLO signal, processes an FDM pilot comprising a wide-area FDM pilot and a local-area FDM pilot, from the FLO signal; and processes data comprising wide-area data and local-area data, from the FLO signal.
摘要:
A system and method for time diversity uses interleaving. To simplify the operation at both transmitters and receivers, a formula can be used to determine the mapping from slot to interlace at a given OFDM symbol time.
摘要:
A system and method for frequency diversity uses interleaving. Subcarriers of an interlace are interleaved in a bit reversal fashion and the interlaces are interleaved in the bit reversal fashion.
摘要:
Systems and methods are provided for processing forward link only (FLO) signals. A device receives a FLO signal, processes a TDM pilot comprising a TDM Pilot 1, a TDM Pilot 2, a WIC, a LIC, a Transition Pilot Channel, and a Positioning Pilot, from the FLO signal, processes an overhead information symbol (OIS) comprising a wide-area OIS and a local-area OIS, from the FLO signal, processes an FDM pilot comprising a wide-area FDM pilot and a local-area FDM pilot, from the FLO signal; and processes data comprising wide-area data and local-area data, from the FLO signal.
摘要:
Techniques for transmitting overhead information to facilitate efficient reception of individual data streams are described. A base station may transmit multiple data streams on multiple data channels (or MLCs). The MLCs may be transmitted at different times and on different frequency subbands. The time-frequency location of each MLC may change over time. The overhead information indicates the time-frequency location of each MLC and may be sent as “composite” and “embedded” overhead information. The composite overhead information indicates the time-frequency locations of all MLCs and is sent periodically in each super-frame. A wireless device receives the composite overhead information, determines the time-frequency location of each MLC of interest, and receives each MLC at the indicated time-frequency location. The embedded overhead information for each MLC indicates the time-frequency location of that MLC in the next super-frame and is transmitted along with the payload of the MLC in the current super-frame.