Abstract:
A procedure kit that removably retains components to be used during a medical procedure, such as the insertion of a catheter into a patient, is disclosed. The procedure kit is securable to a surface or structure such that the kit is positioned as desired by the clinician, thus minimizing chances that the kit will fall to the ground or undesirably move. In one embodiment, the procedure kit comprises a body defining a plurality of pockets that are sized to removably receive therein components for use in the medical procedure, an openable flap that covers at least a portion of the pockets; and an adhesive portion included on a portion of the body to enable the procedure kit to be secured to a structure or surface proximate to the patient, such as the sterile drape covering the patient.
Abstract:
An access port for providing subcutaneous access to a patient is disclosed. In one embodiment, the port includes an internal body defining a fluid cavity that is accessible via a septum. A compliant outer cover including silicone is disposed about at least a portion of the body. A flange is included with the port body and is covered by the outer cover. The flange radially extends about a perimeter of the port body proximate the septum so as to impede penetration of a needle substantially into the outer cover in instances where the needle misses the septum. The flange can further include both an anchoring feature for securing the outer cover to the port body and an identification feature observable via x-ray imaging technology for conveying information indicative of at least one attribute of the access port. The outer cover provides a suitable surface for application of an antimicrobial/antithrombotic coating.
Abstract:
An access port for providing subcutaneous access to a patient is disclosed. In one embodiment, the port includes an internal body defining a fluid cavity that is accessible via a septum. A compliant outer cover including silicone is disposed about at least a portion of the body. A flange is included with the port body and is covered by the outer cover. The flange radially extends about a perimeter of the port body proximate the septum so as to impede penetration of a needle substantially into the outer cover in instances where the needle misses the septum. The flange can further include both an anchoring feature for securing the outer cover to the port body and an identification feature observable via x-ray imaging technology for conveying information indicative of at least one attribute of the access port. The outer cover provides a suitable surface for application of an antimicrobial/antithrombotic coating.
Abstract:
A pre-curved catheter tube of a catheter assembly or other elongate medical device and methods for forming such a device using a heating procedure is disclosed. Pre-curving of the catheter tube is desirable to impart to the catheter assembly a desired positional configuration when the catheter assembly is inserted into a patient. The heating procedure may include heat sterilization procedures commonly used to sterilize medical devices prior to use. One method for curving a catheter tube of a catheter assembly includes constraining the catheter tube into a curved configuration using the tube constraint, heating the catheter tube in the curved configuration for a predetermined time at a predetermined temperature, and releasing the catheter tube from the tube constraint after the heating is complete.
Abstract:
An access port for providing subcutaneous access to a patient is disclosed. In one embodiment, the port includes an internal body defining a fluid cavity that is accessible via a septum. A compliant outer cover including silicone is disposed about at least a portion of the body. A flange is included with the port body and is covered by the outer cover. The flange radially extends about a perimeter of the port body proximate the septum so as to impede penetration of a needle substantially into the outer cover in instances where the needle misses the septum. The flange can further include both an anchoring feature for securing the outer cover to the port body and an identification feature observable via x-ray imaging technology for conveying information indicative of at least one attribute of the access port. The outer cover provides a suitable surface for application of an antimicrobial/antithrombotic coating.
Abstract:
An access port for providing subcutaneous access to a patient is disclosed. In one embodiment, the port includes an internal body defining a fluid cavity that is accessible via a septum. A compliant outer cover including silicone is disposed about at least a portion of the body. A flange is included with the port body and is covered by the outer cover. The flange radially extends about a perimeter of the port body proximate the septum so as to impede penetration of a needle substantially into the outer cover in instances where the needle misses the septum. The flange can further include both an anchoring feature for securing the outer cover to the port body and an identification feature observable via x-ray imaging technology for conveying information indicative of at least one attribute of the access port. The outer cover provides a suitable surface for application of an antimicrobial/antithrombotic coating.
Abstract:
An access port for subcutaneous implantation is disclosed. The access port may include a body for capturing a septum for repeatedly inserting a needle therethrough into a cavity defined within the body. The access port may further include at least one feature structured and configured for identification of the access port subsequent to subcutaneous implantation. Methods of identifying a subcutaneously implanted access port are also disclosed. For example, a subcutaneously implanted access port may be provided and at least one feature of the subcutaneously implanted access port may be perceived. The subcutaneously implanted access port may be identified in response to perceiving the at least one feature. In one embodiment, an identification feature is included on a molded insert that is sandwiched between base and cap portions of the access port so as to be visible after implantation via x-ray imaging technology.
Abstract:
A pre-curved catheter tube of a catheter assembly or other elongate medical device and methods for forming such a device using a heating procedure is disclosed. Pre-curving of the catheter tube is desirable to impart to the catheter assembly a desired positional configuration when the catheter assembly is inserted into a patient. The heating procedure may include heat sterilization procedures commonly used to sterilize medical devices prior to use. One method for curving a catheter tube of a catheter assembly includes constraining the catheter tube into a curved configuration using the tube constraint, heating the catheter tube in the curved configuration for a predetermined time at a predetermined temperature, and releasing the catheter tube from the tube constraint after the heating is complete.
Abstract:
An access port for subcutaneous implantation is disclosed. The access port may include a body for capturing a septum for repeatedly inserting a needle therethrough into a cavity defined within the body. The access port may further include at least one feature structured and configured for identification of the access port subsequent to subcutaneous implantation. Methods of identifying a subcutaneously implanted access port are also disclosed. For example, a subcutaneously implanted access port may be provided and at least one feature of the subcutaneously implanted access port may be perceived. The subcutaneously implanted access port may be identified in response to perceiving the at least one feature. In one embodiment, an identification feature is included on a molded insert that is sandwiched between base and cap portions of the access port so as to be visible after implantation via x-ray imaging technology.
Abstract:
A pre-curved catheter tube of a catheter assembly or other elongate medical device and methods for forming such a device using a heating procedure is disclosed. Pre-curving of the catheter tube is desirable to impart to the catheter assembly a desired positional configuration when the catheter assembly is inserted into a patient. The heating procedure may include heat sterilization procedures commonly used to sterilize medical devices prior to use. In one embodiment, therefore, a catheter assembly is disclosed, comprising an elongate catheter tube defining at least one lumen, and a tube constraint. The tube constraint is included with the catheter assembly and is configured to temporarily constrain the catheter tube in a curved configuration during a heating procedure of the catheter assembly so as to permanently form the catheter tube in the curved configuration after the heating procedure is complete and the catheter tube is released from the tube constraint.