Abstract:
An optical member includes a curved portion comprising an optically transmissive material. The enclosure has an outer surface and an inner surface opposite the outer surface. At least one light redirection feature protrudes from the inner surface. At least one indentation defined on the outer surface is configured to refract light.
Abstract:
The present invention relates to different embodiments of lighting fixtures, such as high bay lighting fixtures, comprising improved features. One of these features can be a driver box placement that is displaced from the center of the fixture. In one such embodiment, the driver box can be mounted such that no portion is over the emitters. Another improved features is a heat sink with branching spokes. As they move away from the center of the heat sink, each of the spokes can branch into multiple spokes, which can improve conductive thermal dissipation. Empty spaces can be left between the spokes to improve convective thermal dissipation.
Abstract:
The present invention relates to different embodiments of lighting fixtures, such as high bay lighting fixtures, comprising improved features. One of these features can be a driver box placement that is displaced from the center of the fixture. In one such embodiment, the driver box can be mounted such that no portion is over the emitters. Another improved features is a heat sink with branching spokes. As they move away from the center of the heat sink, each of the spokes can branch into multiple spokes, which can improve conductive thermal dissipation. Empty spaces can be left between the spokes to improve convective thermal dissipation.
Abstract:
An LED light fixture including at least one LED light source thermally coupled to a heat-conductive structure. The heat-conductive structure having an LED-supporting region and heat-dissipating surfaces extending away therefrom. The at least one LED light source is thermally coupled to the LED-supporting region. The heat-conductive structure defines venting apertures bordering the at least one LED light source to facilitate ambient fluid flow to and from the heat-dissipating surfaces. In some embodiments, the LED light fixture includes a protrusion extending into a corresponding one of the venting apertures and oriented to direct air flow. In certain embodiments, the heat-conductive structure defines a plurality of venting apertures adjacent the at least one LED light source, the heat-dissipating surfaces include fins increasing in height at positions adjacent to the at least one of the venting apertures.
Abstract:
An LED light fixture including at least one LED light source thermally coupled to a heat-conductive structure. The heat-conductive structure having an LED-supporting region and heat-dissipating surfaces extending away therefrom. The at least one LED light source is thermally coupled to the LED-supporting region. The heat-conductive structure defines venting apertures bordering the at least one LED light source to facilitate ambient fluid flow to and from the heat-dissipating surfaces. In some embodiments, the LED light fixture includes a protrusion extending into a corresponding one of the venting apertures and oriented to direct air flow. In certain embodiments, the heat-conductive structure defines a plurality of venting apertures adjacent the at least one LED light source, the heat-dissipating surfaces include fins increasing in height at positions adjacent to the at least one of the venting apertures.