Abstract:
A cooling system for a cylinder head of an internal combustion engine includes a cylindrical seat configured to engage an exhaust valve, a first coolant jacket, and a first conduit. The exhaust valve seat defines an annular cooling passage extending along a circumference of the cylindrical seat. A wall of the cylindrical seat defines a first opening into the annular cooling passage and a second opening into the annular cooling passage, where the first opening is positioned diametrically opposite to the second opening. The first coolant jacket is positioned adjacent to a fire-deck of the internal combustion engine. The first conduit fluidly couples the first coolant jacket to the at least one of the first opening and the second opening to the annular cooling passage in the exhaust valve seat.
Abstract:
An injector combustion shield assembly comprising a bore configured to receive a fuel injector, the bore including a fluid opening in fluid communication with a fluid jacket and a fluid outlet positioned within an annular wall of the bore; and a valve positioned between the fluid jacket and the fluid opening and configured to selectively permit a fluid from the fluid jacket to enter the bore, the valve being movable between an open configuration to permit fluid flow from the fluid jacket into the bore via the fluid opening and a closed configuration to prevent fluid flow from the fluid jacket into the bore.
Abstract:
A cylinder head [20, 120] mountable onto a cylinder block [16] of an engine [10] is disclosed. The cylinder head [20, 120] includes at least one fastener boss [28, 128] configured for receiving a fastener [24], and the cylinder head [20, 120] is securely fastened onto the cylinder block [16] of the engine [10] by the fastener [24]. A boss cutout [30, 130] is formed on a lower portion of the at least one fastener boss [28, 128] that abuts the cylinder block [16] such that a contact pressure balance of sealing pressures around the cylinder block [16] is evenly distributed.
Abstract:
A cooling system for a cylinder head of an internal combustion engine includes a cylindrical seat configured to engage an exhaust valve, a first coolant jacket, and a first conduit. The exhaust valve seat defines an annular cooling passage extending along a circumference of the cylindrical seat. A wall of the cylindrical seat defines a first opening into the annular cooling passage and a second opening into the annular cooling passage, where the first opening is positioned diametrically opposite to the second opening. The first coolant jacket is positioned adjacent to a fire-deck of the internal combustion engine. The first conduit fluidly couples the first coolant jacket to the at least one of the first opening and the second opening to the annular cooling passage in the exhaust valve seat.
Abstract:
A cooling system for a cylinder head of an internal combustion engine includes a cylindrical seat configured to engage an exhaust valve, a first coolant jacket, and a first conduit. The exhaust valve seat defines an annular cooling passage extending along a circumference of the cylindrical seat. A wall of the cylindrical seat defines a first opening into the annular cooling passage and a second opening into the annular cooling passage, where the first opening is positioned diametrically opposite to the second opening. The first coolant jacket is positioned adjacent to a fire-deck of the internal combustion engine. The first conduit fluidly couples the first coolant jacket to the at least one of the first opening and the second opening to the annular cooling passage in the exhaust valve seat.
Abstract:
A cylinder head [20, 120] mountable onto a cylinder block [16] of an engine [10] is disclosed. The cylinder head [20, 120] includes at least one fastener boss [28, 128] configured for receiving a fastener [24], and the cylinder head [20, 120] is securely fastened onto the cylinder block [16] of the engine [10] by the fastener [24]. A boss cutout [30, 130] is formed on a lower portion of the at least one fastener boss [28, 128] that abuts the cylinder block [16] such that a contact pressure balance of sealing pressures around the cylinder block [16] is evenly distributed.
Abstract:
A cylinder head [20, 120] mountable onto a cylinder block [16] of an engine [10] is disclosed. The cylinder head [20, 120] includes at least one fastener boss [28, 128] configured for receiving a fastener [24], and the cylinder head [20, 120] is securely fastened onto the cylinder block [16] of the engine [10] by the fastener [24]. A boss cutout [30, 130] is formed on a lower portion of the at least one fastener boss [28, 128] that abuts the cylinder block [16] such that a contact pressure balance of sealing pressures around the cylinder block [16] is evenly distributed.
Abstract:
A cooling system for a cylinder head of an internal combustion engine includes a cylindrical seat configured to engage an exhaust valve, a first coolant jacket, and a first conduit. The exhaust valve seat defines an annular cooling passage extending along a circumference of the cylindrical seat. A wall of the cylindrical seat defines a first opening into the annular cooling passage and a second opening into the annular cooling passage, where the first opening is positioned diametrically opposite to the second opening. The first coolant jacket is positioned adjacent to a fire-deck of the internal combustion engine. The first conduit fluidly couples the first coolant jacket to the at least one of the first opening and the second opening to the annular cooling passage in the exhaust valve seat.
Abstract:
A combustion pre-chamber device for a spark ignition internal combustion engine is configured to engage a spark plug and be mounted to a cylinder head in communication with a combustion chamber of a cylinder of the engine. The combustion pre-chamber device includes a number of bores that open at an outer surface thereof that extend into the body and receive a coolant flow to provide cooling for a combustion pre-chamber of the combustion pre-chamber device.
Abstract:
An injector combustion shield assembly comprising a bore configured to receive a fuel injector, the bore including a fluid opening in fluid communication with a fluid jacket and a fluid outlet positioned within an annular wall of the bore; and a valve positioned between the fluid jacket and the fluid opening and configured to selectively permit a fluid from the fluid jacket to enter the bore, the valve being movable between an open configuration to permit fluid flow from the fluid jacket into the bore via the fluid opening and a closed configuration to prevent fluid flow from the fluid jacket into the bore.