Abstract:
Methods and systems of controlling operation of a dual fuel engine are provided, comprising determining a target exhaust temperature, sensing an actual exhaust temperature, determining an exhaust temperature deviation by comparing the actual exhaust temperature to the target exhaust temperature, comparing the exhaust temperature deviation to a threshold, adjusting at least one of an intake throttle, a wastegate, a compressor bypass valve, an exhaust throttle, a VGT and engine valve timing when the exhaust temperature deviation exceeds the threshold to control charge-flow to the engine, and continuing the adjusting until the exhaust temperature deviation is less than the threshold.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
The system comprises a fuel description module structured to provide a first signal, and a control circuit operable to receive the first signal. The fuel description module comprises a fuel consumption detection package. The fuel consumption detection package an intake manifold temperature sensor and an exhaust temperature sensor, wherein the first signal corresponds to a difference between the exhaust manifold temperature (EMT) and the intake manifold temperature (IMT). The control circuit is responsive to the first signal to produce a second signal indicating a total energy content (Efuel) of fuel supplied to the dual-fuel engine. The Efuel value indicating the total energy content provided to the engine from a first fuel and a second fuel.
Abstract:
An injector combustion shield assembly comprising a bore configured to receive a fuel injector, the bore including a fluid opening in fluid communication with a fluid jacket and a fluid outlet positioned within an annular wall of the bore; and a valve positioned between the fluid jacket and the fluid opening and configured to selectively permit a fluid from the fluid jacket to enter the bore, the valve being movable between an open configuration to permit fluid flow from the fluid jacket into the bore via the fluid opening and a closed configuration to prevent fluid flow from the fluid jacket into the bore.
Abstract:
A system and method are disclosed for desulfating an oxidation catalyst in an aftertreatment system of a multifuel internal combustion engine. The oxidation catalyst can be desulfated in response to one or more desulfation triggering events. The desulfation process includes providing hydrocarbons from one or all of the multiple fuel sources to an upstream oxidation catalyst. The hydrocarbons react with the exhaust gas within the upstream oxidation catalyst to deplete oxygen in the exhaust flow to thereby reduce the desulfation temperature of the oxidation catalyst while elevating a temperature of the exhaust gas to a desulfation temperature range.
Abstract:
Systems and methods for controlling operation of dual fuel internal combustion engines are disclosed. The control techniques provide for override of a dual fuel mode of operation of the engine by selection of a diesel only fuelling mode in response to one or more operating conditions of the internal combustion engine.
Abstract:
Apparatuses, methods and systems for controlling operation of dual fuel engines are disclosed. One embodiment is a method for controlling operation of a dual fuel engine based upon a combustion index value. The combustion index may be empirically determined to provide desired engine operation at a plurality of ratios of gaseous fuel and liquid fuel. The desired engine operation may include a number of criteria including, for examiner an engine knock criterion and/or an exhaust emissions criterion. The combustion index value may be determined during operation of the engine based upon measured, estimated or predicted engine operating parameters. The combustion index value may be utilized to interpolate between a first engine operating map for a first ratio of gaseous fuel and liquid fuel and a second engine operating map for a second ratio of gaseous fuel and liquid fuel.
Abstract:
The present disclosure relates to dual fuel internal combustion engines with multiple cylinder banks and/or cylinder subsets, and exhaust aftertreatment systems associated therewith. Systems and methods are disclosed that relate to engine operations involving fuelling control for fuel cutout of one or more of the cylinder banks and/or cylinder subsets in response to a fuel cutout event to increase gaseous fuel substitution on the other cylinder banks and/or cylinder subsets to satisfy the torque request and thermal management conditions of the aftertreatment system.
Abstract:
A method includes supplying a first quantity of a first fuel to an engine and supplying a charge including a second fuel and air to the engine. The first fuel is different from the second fuel. The method further includes mixing the first fuel with the charge, supplying a second quantity of the first fuel to the engine, and igniting at least a portion of the first and second fuels in response to supplying the second quantity of the first fuel.
Abstract:
Systems and methods for controlling operation of dual fuel internal combustion engines in response to cylinder pressure based determinations are disclosed. The techniques control fuelling contributions from a first fuel source and a second fuel source to achieve desired operational outcomes in response to the cylinder pressure based determinations.