Abstract:
Designing memory subsystems for integrated circuits can be time-consuming and costly task. To reduce development time and costs, an automated system and method for designing and constructing high-speed memory operations is disclosed. The automated system accepts a set of desired memory characteristics and then methodically selects different potential memory system design types and different implementations of each memory system design type. The potential memory system design types may include traditional memory systems, optimized traditional memory systems, intelligent memory systems, and hierarchical memory systems. A selected set of proposed memory systems that meet the specified set of desired memory characteristics is output to a circuit designer. When a circuit designer selects a proposed memory system, the automated system generates a complete memory system design, a model for the memory system, and a test suite for the memory system.
Abstract:
An ActiveTest solution for memory is disclosed which can search for memory errors during the operation of a product containing digital memory. The ActiveTest system tests memory banks that are not being accessed by normal memory users in order to continually test the memory system in the background. When there is a conflict between the ActiveTest system and a memory user, the memory user is generally given priority.
Abstract:
Designing memory subsystems for integrated circuits can be time-consuming and costly task. To reduce development time and costs, an automated system and method for designing and constructing high-speed memory operations is disclosed. The automated system accepts a set of desired memory characteristics and then methodically selects different potential memory system design types and different implementations of each memory system design type. The potential memory system design types may include traditional memory systems, optimized traditional memory systems, intelligent memory systems, and hierarchical memory systems. A selected set of proposed memory systems that meet the specified set of desired memory characteristics is output to a circuit designer. When a circuit designer selects a proposed memory system, the automated system generates a complete memory system design, a model for the memory system, and a test suite for the memory system.
Abstract:
An ActiveTest solution for memory is disclosed which can search for memory errors during the operation of a product containing digital memory. The ActiveTest system tests memory banks that are not being accessed by normal memory users in order to continually test the memory system in the background. When there is a conflict between the ActiveTest system and a memory user, the memory user is generally given priority.
Abstract:
An ActiveTest solution for memory is disclosed which can search for memory errors during the operation of a product containing digital memory. The ActiveTest system tests memory banks that are not being accessed by normal memory users in order to continually test the memory system in the background. When there is a conflict between the ActiveTest system and a memory user, the memory user is generally given priority.
Abstract:
Multi-port memory circuits are often required within modern digital integrated circuits to store data. Multi-port memory circuits allow multiple memory users to access the same memory cell simultaneously. Multi-port memory circuits are generally custom-designed in order to obtain the best performance or synthesized with logic synthesis tools for quick design. However, these two options for creating multi-port memory give integrated circuit designers a stark choice: invest a large amount of time and money to custom design an efficient multi-port memory system or allow logic synthesis tools to inefficiently create multi-port memory. An intermediate solution is disclosed that allows an efficient multi-port memory array to be created largely using standard circuit cell components and register transfer level hardware design language code.
Abstract:
Multi-port memory circuits are often required within modern digital integrated circuits to store data. Multi-port memory circuits allow multiple memory users to access the same memory cell simultaneously. Multi-port memory circuits are generally custom-designed in order to obtain the best performance or synthesized with logic synthesis tools for quick design. However, these two options for creating multi-port memory give integrated circuit designers a stark choice: invest a large amount of time and money to custom design an efficient multi-port memory system or allow logic synthesis tools to inefficiently create multi-port memory. An intermediate solution is disclosed that allows an efficient multi-port memory array to be created largely using standard circuit cell components and register transfer level hardware design language code.