Abstract:
A mated connector assembly includes: a first connector assembly, comprising a plurality of first coaxial connectors mounted on a mounting structure and a first shell; and a second connector assembly, comprising a plurality of second coaxial connectors, each of the second coaxial connectors connected with a respective coaxial cable and mated with a respective first coaxial connector. The second connector assembly includes a second shell surrounding the second coaxial connectors, the second shell defining a plurality of electrically isolated cavities, each of the second coaxial connectors being located in a respective cavity. In in a mated condition the second shell resides within the first shell.
Abstract:
A ganged connector assembly includes: a plurality of coaxial connectors, each of the coaxial connectors connected with a respective coaxial cable extending rearwardly therefrom, each of the coaxial connectors including an inner contact and an outer body that is electrically separated from the inner contact; a shell having a plurality of cavities; and a plurality of rear bodies, each of the rear bodies encircling a respective outer body, each of the rear bodies mounted in a respective cavity of the shell. Each of the rear bodies includes a first locking feature. A second locking feature is located in each of the cavities and is fixed relative to the shell. The first and second locking features are configured such that rotation of a first of the plurality of rear bodies relative to the shell moves the first rear body between locked and unlocked positions, wherein in the locked position a respective first connector and respective first cable are secured with the shell within a respective cavity, and in the unlocked position the first connector and first cable can be removed from the shell without removing the remaining connectors and cables.
Abstract:
A coaxial connector assembly includes: a first plurality of first coaxial connectors mounted within a shell, the shell defining a plurality of electrically isolated cavities, each of the first coaxial connectors being located in a respective cavity; a plurality of first coaxial cables, each of the coaxial cables attached to a respective one of the first coaxial connectors; a second coaxial connector mounted within the shell, the second coaxial connector being smaller that the first coaxial connectors; and a second coaxial cable attached to the second coaxial connector, the second coaxial cable being smaller than the first coaxial cables.
Abstract:
A float plate for a connector interface includes: at least one substantially planar body panel; at least one opening in the body panel, the opening having a perimeter; and a plurality of fingers extending from the perimeter of the opening within a plane defined by the body panel, each finger extending from the perimeter at an oblique angle to a diameter of the opening originating at a fixed end of the finger.
Abstract:
A coaxial connector junction includes first and second coaxial connectors. The first coaxial connector engages the second coaxial connector, a substantially cylindrical member of a first central conductor extension of the first connector being inserted into the cavity of a second central conductor extension of the second connector, and a second outer conductor extension of the second connector being inserted into a first outer conductor extension of the first connector such that a capacitive element is created between the first and second outer conductor extensions by a gap between the first outer conductor extension and the second outer conductor extension. At least one of a length of the gap, an inner diameter of the second outer conductor extension, a thickness and dielectric constant of the capacitive element is selected such that the return loss of the junction is maintained below a preselected level over a preselected frequency range.
Abstract:
A method of forming a solder joint between a coaxial cable and a coaxial connector includes the steps of: positioning a solder element between an end of an outer conductor of the coaxial cable and a connector body of the connector, wherein the solder element is positioned within a vacuum chamber; melting the solder element to form a solder joint between the outer conductor and the connector body, the solder joint including a lower surface formed by contact with a mounting structure; and applying suction to the melting solder element to reduce the formation of bubbles within the solder joint.
Abstract:
A coaxial cable-connector assembly includes a coaxial cable and a right angle coaxial connector. The cable comprises: an inner conductor having a termination end; a first dielectric layer; and an outer conductor having a termination end. The connector comprises: an inner contact comprising a post configured to mate with the inner conductor body of a mating cable jack, the inner contact further including a receptacle that receives the termination end of the inner conductor such that the post is generally perpendicular to the inner conductor; and an outer conductor body configured to mate with the outer conductor body of the mating jack, the outer conductor body being connected with the termination end of the outer conductor. A second dielectric layer is interposed between the inner contact of the connector and the inner conductor of the coaxial cable that creates a capacitive element between the inner contact and the inner conductor.
Abstract:
A ganged connector assembly includes: first, second, third and fourth coaxial cables; first, second, third and fourth coaxial connectors, each of the coaxial connectors connected with a corresponding one of the coaxial cables; a shell surrounding the coaxial connectors, the shell configured to electrically isolate each of the coaxial connectors from the other coaxial connectors, wherein the coaxial connectors are arranged in a generally square pattern; and a strain relief boot comprising: first and second cover pieces that are assembled to create a cover around portions of the coaxial cables and the coaxial connectors; and first and second braces that reside within the cover, the first brace being positioned between first and second of the coaxial connectors, and the second brace being positioned between third and fourth of the coaxial connectors.
Abstract:
A ganged connector assembly includes: first, second, third and fourth coaxial cables; first, second, third and fourth coaxial connectors, each of the coaxial connectors connected with a corresponding one of the coaxial cables; a shell surrounding the coaxial connectors, the shell configured to electrically isolate each of the coaxial connectors from the other coaxial connectors, wherein the coaxial connectors are arranged in a generally square pattern; and a strain relief boot comprising: first and second cover pieces that are assembled to create a cover around portions of the coaxial cables and the coaxial connectors; and first and second braces that reside within the cover, the first brace being positioned between first and second of the coaxial connectors, and the second brace being positioned between third and fourth of the coaxial connectors.
Abstract:
A coaxial cable-connector assembly includes a coaxial cable, a coaxial connector, and a rear body. The coaxial cable includes: an inner conductor; a dielectric layer circumferentially surrounding the inner conductor; an outer conductor circumferentially surrounding the dielectric layer, the outer conductor having an inner surface and an outer surface; and a jacket circumferentially surrounding the outer conductor. The coaxial connector includes: an inner contact electrically connected with the inner conductor; an outer connector body spaced apart from and circumferentially surrounding the inner contact, the outer connector body including a first securing feature; and a dielectric spacer interposed between the inner contact and the outer body. The rear body has a main section and a front collet with forwardly-extending fingers, the fingers engaging the outer surface of the outer conductor of the cable, the fingers including a second securing feature, wherein the second securing feature engages the first securing feature to maintain the outer connector body and the rear body in position on the cable.