Abstract:
According to certain aspects, a system can include a client computing device configured to: in response to user interaction, store an identifier associated with a first tag in association with a first file; and in response to instructions to perform a secondary copy operation, forward the first file, a second file, and the identifier associated with the first tag. The system may also include a secondary storage controller computer(s) configured to: based on a review of the identifier associated with the first tag, identify the first file as having been tagged with the first tag; electronically obtain rules associated with the first tag; perform on the first file at least a first secondary storage operation specified by the rules associated with the first tag; and perform on the second file at least a second secondary storage operation, wherein the first and second secondary storage operations are different.
Abstract:
According to certain aspects, a system can include a client computing device configured to: in response to user interaction, store an identifier associated with a first tag in association with a first file; and in response to instructions to perform a secondary copy operation, forward the first file, a second file, and the identifier associated with the first tag. The system may also include a secondary storage controller computer(s) configured to: based on a review of the identifier associated with the first tag, identify the first file as having been tagged with the first tag; electronically obtain rules associated with the first tag; perform on the first file at least a first secondary storage operation specified by the rules associated with the first tag; and perform on the second file at least a second secondary storage operation, wherein the first and second secondary storage operations are different.
Abstract:
Hypervisor-independent reference copies of virtual machine payload data based on block-level pseudo-mount infrastructure and techniques are generated and stored in an illustrative data storage management system. An illustrative hypervisor-independent reference copy comprises one or more virtual-machine payload data files that originated from a first virtual machine. The hypervisor-independent virtual-machine-payload reference copy is governed by a distinct reference copy policy that controls retention, storage, tiering, scheduling, etc. for the reference copy, independently of how the illustrative system treats other virtual machine payload data files originating from the same virtual machine.
Abstract:
According to certain aspects, a system can include a client computing device configured to: in response to user interaction, store an identifier associated with a first tag in association with a first file; and in response to instructions to perform a secondary copy operation, forward the first file, a second file, and the identifier associated with the first tag. The system may also include a secondary storage controller computer(s) configured to: based on a review of the identifier associated with the first tag, identify the first file as having been tagged with the first tag; electronically obtain rules associated with the first tag; perform on the first file at least a first secondary storage operation specified by the rules associated with the first tag; and perform on the second file at least a second secondary storage operation, wherein the first and second secondary storage operations are different.
Abstract:
The data storage system according to certain aspects can filter secondary copies of data (e.g., backups, snapshots, archives, etc.) generated by multiple client computing devices into a single, filtered, global reference copy. A reference copy may be a filtered view or representation of secondary storage data in a data storage system. A reference copy may include a data structure that includes references to a subset of secondary storage data that meets certain filtering criteria. The filtering criteria may be specified by users according to user preference. Data included in a reference copy may be stored in native format (e.g., format of the application that generated the data) and be accessible through the application associated with the data.
Abstract:
A streamlined approach analyzes block-level backups of VM virtual disks and creates both coarse and fine indexes of backed up VM data files in the block-level backups. The indexes (collectively the “content index”) enable granular searching by filename, by file attributes (metadata), and/or by file contents, and further enable granular live browsing of backed up VM files. Thus, by using the illustrative data storage management system, ordinary block-level backups of virtual disks are “opened to view” through indexing. Any block-level copies can be indexed according to the illustrative embodiments, including file system block-level copies. The indexing occurs offline in an illustrative data storage management system, after VM virtual disks are backed up into block-level backup copies, and therefore the indexing does not cut into the source VM's performance. The disclosed approach is widely applicable to VMs executing in cloud computing environments and/or in non-cloud data centers. The illustrative content indexing is accomplished without restoring the VM data files being indexed to a staging location.
Abstract:
The data storage system according to certain aspects can filter secondary copies of data (e.g., backups, snapshots, archives, etc.) generated by multiple client computing devices into a single, filtered, global reference copy. A reference copy may be a filtered view or representation of secondary storage data in a data storage system. A reference copy may include a data structure that includes references to a subset of secondary storage data that meets certain filtering criteria. The filtering criteria may be specified by users according to user preference. Data included in a reference copy may be stored in native format (e.g., format of the application that generated the data) and be accessible through the application associated with the data.
Abstract:
According to certain aspects, a system can include a client computing device configured to: in response to user interaction, store an identifier associated with a first tag in association with a first file; and in response to instructions to perform a secondary copy operation, forward the first file, a second file, and the identifier associated with the first tag. The system may also include a secondary storage controller computer(s) configured to: based on a review of the identifier associated with the first tag, identify the first file as having been tagged with the first tag; electronically obtain rules associated with the first tag; perform on the first file at least a first secondary storage operation specified by the rules associated with the first tag; and perform on the second file at least a second secondary storage operation, wherein the first and second secondary storage operations are different.
Abstract:
Hypervisor-independent reference copies of virtual machine payload data based on block-level pseudo-mount infrastructure and techniques are generated and stored in an illustrative data storage management system. An illustrative hypervisor-independent reference copy comprises one or more virtual-machine payload data files that originated from a first virtual machine. The hypervisor-independent virtual-machine-payload reference copy is governed by a distinct reference copy policy that controls retention, storage, tiering, scheduling, etc. for the reference copy, independently of how the illustrative system treats other virtual machine payload data files originating from the same virtual machine.
Abstract:
Hypervisor-independent reference copies of virtual machine payload data based on block-level pseudo-mount infrastructure and techniques are generated and stored in an illustrative data storage management system. An illustrative hypervisor-independent reference copy comprises one or more virtual-machine payload data files that originated from a first virtual machine. The hypervisor-independent virtual-machine-payload reference copy is governed by a distinct reference copy policy that controls retention, storage, tiering, scheduling, etc. for the reference copy, independently of how the illustrative system treats other virtual machine payload data files originating from the same virtual machine.