METHODS AND APPARATUS FOR MANUFACTURING OPTIMIZED PANELS AND OTHER COMPOSITE STRUCTURES

    公开(公告)号:US20220355569A1

    公开(公告)日:2022-11-10

    申请号:US17583109

    申请日:2022-01-24

    Abstract: The disclosure relates to additively manufactured (AM) composite structures such as panels for use in transport structures or other mechanized assemblies. An AM core may be optimized for an intended application of a panel. In various embodiments, one or more values such as strength, stiffness, density, energy absorption, ductility, etc. may be optimized in a single AM core to vary across the AM core in one or more directions for supporting expected load conditions. In an embodiment, the expected load conditions may include forces applied to the AM core or corresponding panel from different directions in up to three dimensions. Where the structure is a panel, face sheets may be affixed to respective sides of the core. The AM core may be a custom honeycomb structure. In other embodiments, the face sheets may have custom 3-D profiles formed traditionally or through additive manufacturing to enable structural panels with complex profiles. The AM core may include a protrusion to provide fixturing features to enable external connections. In other embodiments, inserts, fasteners, or internal channels may be co-printed with the core. In still other embodiments, the AM core may be used in a composite structure such as, for example a rotor blade or a vehicle component.

    SURROGATE SUPPORTS IN ADDITIVE MANUFACTURING

    公开(公告)号:US20200079028A1

    公开(公告)日:2020-03-12

    申请号:US16568188

    申请日:2019-09-11

    Abstract: 3-D build jobs having surrogate supports, 3-D printers using surrogate supports, and techniques to support vulnerable regions of build pieces using surrogate supports are disclosed. The surrogate supports are generated in a first material configuration and are offset via a gap from the vulnerable regions. The gap comprises a second material configuration, such as loose or partially fused powder on which the build piece can be supported during 3-D printing. In alternative embodiments, the gap instead includes thin manual ties or a solid body using material that is stronger but more amenable to breaking off without damaging the build piece. Post-processing steps are dramatically reduced as the surrogate supports and gaps facilitate virtually error-free separation from the build piece. In an embodiment, the surrogate supports include a support structure extending to a fixed base underneath, the fixed base being a build plate or a global surrogate.

Patent Agency Ranking