Abstract:
DIG-657 vegetative insecticidal toxins, polynucleotides encoding such toxins, use of such toxins to control pests, and transgenic plants that produce such toxins are disclosed. The invention includes DIG-657 variants, fragments and analogs.
Abstract:
The subject invention provides novel plants that are not only resistant to 2,4-D, but also to pyridyloxyacetate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention “stacked” together with one or more other herbicide resistance genes. The subject invention enables novel combinations of herbicides to be used in new ways. Furthermore, the subject invention provides novel methods of preventing the development of, and controlling, strains of weeds that are resistant to one or more herbicides such as glyphosate. The preferred enzyme and gene for use according to the subject invention are referred to herein as AAD-12 (AryloxyAlkanoate Dioxygenase). This highly novel discovery is the basis of significant herbicide tolerant crop trait and selectable marker opportunities.
Abstract:
The subject invention provides novel plants that are not only resistant to 2,4-D, but also to pyridyloxyacetate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention “stacked” together with one or more other herbicide resistance genes. The subject invention enables novel combinations of herbicides to be used in new ways. Furthermore, the subject invention provides novel methods of preventing the development of, and controlling, strains of weeds that are resistant to one or more herbicides such as glyphosate. The preferred enzyme and gene for use according to the subject invention are referred to herein as AAD-12 (AryloxyAlkanoate Dioxygenase). This highly novel discovery is the basis of significant herbicide tolerant crop trait and selectable marker opportunities.
Abstract:
The subject invention provides novel plants that are not only resistant to 2,4-D, but also to pyridyloxyacetate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention “stacked” together with one or more other herbicide resistance genes. The subject invention enables novel combinations of herbicides to be used in new ways. Furthermore, the subject invention provides novel methods of preventing the development of, and controlling, strains of weeds that are resistant to one or more herbicides such as glyphosate. The preferred enzyme and gene for use according to the subject invention are referred to herein as AAD-12 (AryloxyAlkanoate Dioxygenase). This highly novel discovery is the basis of significant herbicide tolerant crop trait and selectable marker opportunities.
Abstract:
DIG-657 vegetative insecticidal toxins, polynucleotides encoding such toxins, use of such toxins to control pests, and transgenic plants that produce such toxins are disclosed. The invention includes DIG-657 variants, fragments and analogs.
Abstract:
The subject invention provides novel plants that are not only resistant to 2,4-D, but also to pyridyloxyacetate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention “stacked” together with one or more other herbicide resistance genes. The subject invention enables novel combinations of herbicides to be used in new ways. Furthermore, the subject invention provides novel methods of preventing the development of, and controlling, strains of weeds that are resistant to one or more herbicides such as glyphosate. The preferred enzyme and gene for use according to the subject invention are referred to herein as AAD-12 (AryloxyAlkanoate Dioxygenase). This highly novel discovery is the basis of significant herbicide tolerant crop trait and selectable marker opportunities.
Abstract:
DIG-657 vegetative insecticidal toxins, polynucleotides encoding such toxins, use of such toxins to control pests, and transgenic plants that produce such toxins are disclosed. The invention includes DIG-657 variants, fragments and analogs.
Abstract:
The subject invention concerns Bacillus thuringiensis modified Cry1Ca insecticidal toxins and the polynucleotide sequences which encode these toxins. Uses in transgenic plants are described as are methods for protecting crops from insect pest damage.
Abstract:
DIG-657 vegetative insecticidal toxins, polynucleotides encoding such toxins, use of such toxins to control pests, and transgenic plants that produce such toxins are disclosed. The invention includes DIG-657 variants, fragments and analogs.
Abstract:
The subject invention provides novel plants that are not only resistant to 2,4-D, but also to pyridyloxyacetate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention “stacked” together with one or more other herbicide resistance genes. The subject invention enables novel combinations of herbicides to be used in new ways. Furthermore, the subject invention provides novel methods of preventing the development of, and controlling, strains of weeds that are resistant to one or more herbicides such as glyphosate. The preferred enzyme and gene for use according to the subject invention are referred to herein as AAD-12 (AryloxyAlkanoate Dioxygenase). This highly novel discovery is the basis of significant herbicide tolerant crop trait and selectable marker opportunities.