Abstract:
A multilayer film structure including a top encapsulation layer A, a tie Layer B between top Layer A and bottom Layer C and a bottom layer C, the multilayer film structure characterized in that tie Layer B includes a crystalline block composite resin or a block composite resin and bottom Layer C includes a polyolefin having at least one melting point greater than 125 C.
Abstract:
A multilayer film structure comprising a top encapsulation layer A, a tie Layer B between top Layer A and bottom Layer C and a bottom layer C, the multilayer film structure characterized in that tie Layer B comprises a crystalline block composite resin or a block composite resin and bottom Layer C comprises a polyolefin having at least one melting point greater than 125° C.
Abstract:
Disclosed are multilayer film structures comprising a layer (B) that comprises a crystalline block copolymer composite (CBC) or a specified block copolymer composite (BC), comprising i) an ethylene polymer (EP) comprising at least 80 mol % polymerized ethylene; ii) an alpha-olefin-based crystalline polymer (CAOP) and iii) a block copolymer comprising (a) an ethylene polymer block comprising at least 80 mol % polymerized ethylene and (b) a crystalline alpha-olefin block (CAOB); and a layer C that comprises a polyolefin having at least one melting peak greater than 1255 C, the top facial surface of layer C in adhering contact with the bottom facial surface of layer B. Such multilayer film structure preferably comprises (A) a seal layer A having a bottom facial surface in adhering contact with the top facial surface of layer B. Such films are suited for use in electronic device (ED) modules comprising an electronic device such as a PV cell. Also disclosed is a lamination process to construct a laminated PV module comprising such multilayer film structures.