Overlapping and progressive forming method for high-performance multi-element NiAl-based alloy tubular part

    公开(公告)号:US12172203B2

    公开(公告)日:2024-12-24

    申请号:US17724879

    申请日:2022-04-20

    Abstract: An overlapping and progressive forming method for a high-performance multi-element NiAl-based alloy tubular part, including: winding continuously flexible substrates of Ni and Al, and alloying coating continuously or selectively along a width direction or a rolling direction to obtain coated flexible substrates; winding continuously the coated flexible substrates on an outer surface of a core roller according to a sequence of Ni above and Al below to form a Ni/Al laminated structure having a plurality of layers with an outermost layer being a Ni layer, and consolidating with ultrasonic with assistance of a pulse current to combine the continuously wound flexible substrates into a laminated tube blank; and placing the laminated tube blank into a mold, applying a pulse current to both ends of the laminated tube blank for hot fluid high-pressure forming, and synthesizing in-situ to prepare the tubular part with assistance of the pulse current.

    Performance controlling method for high-strength aluminum alloy shell during ultra-low temperature forming process

    公开(公告)号:US11459648B2

    公开(公告)日:2022-10-04

    申请号:US17189229

    申请日:2021-03-01

    Abstract: Provided is a performance controlling method for a high-strength aluminum alloy shell during an ultra-low temperature forming process. The present disclosure greatly improves the performance of an aluminum alloy sheet by applying an ultra-low temperature. The present disclosure cools the aluminum alloy sheet to an ultra-low temperature by using an ultra-low temperature cooling medium, so as to compensate for insufficient hardening caused by insufficient deformation and avoid cracking caused by increased deformation. The present disclosure cools the sheet blank zonally according to a deformation law of a desired curved part, and controls the ultra-low temperature distribution of the sheet blank during forming so as to promote the formation of a substructure in a small-deformation zone. In this way, the present disclosure improves a subsequent age-hardening effect, and corresponding uniformity of microstructure and performance, and effectively solves the problem of non-uniformity due to uneven deformation.

    Device For Super Cryogenic Forming Of Metal Thin-Walled Curved Surface Part

    公开(公告)号:US20220080488A1

    公开(公告)日:2022-03-17

    申请号:US17474752

    申请日:2021-09-14

    Abstract: The present disclosure provides a device for super cryogenic forming of a metal thin-walled curved surface part, including a super cryogenic medium conveying and pressurizing unit, a press, a die unit and a control system. A blank holder cylinder, a blank holder slide, a deep drawing cylinder and a deep drawing slide are disposed on the press. The die unit includes a male die, a blank holder and a female die. The super cryogenic medium conveying and pressurizing unit includes an autoboosting cryogenic container. A cryogenic channel in the blank holder, a cryogenic channel in the female die and a cavity of the female die are communicated with an outlet of the autoboosting cryogenic container by cryogenic pipes, respectively. A cryogenic pump is disposed on the cryogenic pipe between the cavity of the female die and the autoboosting cryogenic container.

    Apparatus and method for forming large-scale thin-walled ring shell by hot-press bending with internal gas pressure

    公开(公告)号:US11413672B2

    公开(公告)日:2022-08-16

    申请号:US17056878

    申请日:2019-11-20

    Abstract: The present disclosure discloses an apparatus and a method for forming a large-scale thin-walled ring shell by hot-press bending with internal gas pressure. The method comprises: welding a first head and a second head to the pipe; arranging a first electrode and a second electrode at the two ends of the pipe; charging compressed gas to the heated sealed pipe assembly; placing the sealed pipe assembly between the convex part of the first die and the concave part of the second die, controlling the temperatures of the first and second dies to perform press bending; increasing the gas pressure in the bent sealed pipe assembly, to attach the bent sealed pipe assembly to the die cavity profile; discharging the compressed gas, cutting the first head, second head and extra material to obtain a formed ring shell segment; welding formed ring shell segments to obtain a large-scale thin-walled ring shell.

    Integrated method for forming and performance control of NiAl alloy thin-walled tubular parts

    公开(公告)号:US10737311B1

    公开(公告)日:2020-08-11

    申请号:US16520555

    申请日:2019-07-24

    Inventor: Shijian Yuan

    Abstract: The present invention provides an integrated method for forming and performance control of NiAl alloy thin-walled tubular parts. A Ni/Al laminated foil tube is obtained after Ni foils and Al foils are alternately laminated and coiled; and the Ni/Al laminated foil tube is subjected to plastic forming, reaction synthesis and densification treatment in a gas bulging forming die to obtain a NiAl alloy thin-walled tubular part. The present invention solves the problem in the prior art that the preparation of an existing NiAl alloy sheet and the formation of the thin-walled tubular part from the sheet feature difficulty in material flow and structural performance control and a complicated process. Data of embodiments shows that the NiAl alloy thin-walled tubular parts obtained by using the method of the present invention has a high forming rate, high dimensional precision, uniform composition distribution, good tubular part compactness and no defects on the surface.

    Ultra-low temperature forming method for ultra-thin curved part of high-strength aluminum alloy

    公开(公告)号:US11571731B2

    公开(公告)日:2023-02-07

    申请号:US16999486

    申请日:2020-08-21

    Abstract: The present invention discloses a method for ultra-low temperature forming an ultra-thin curved part of a high-strength aluminum alloy. The method includes the following steps: step 1: selecting a cladding with a suitable thickness according to a wrinkle limit of a sheet; step 2: stacking the sheet and the cladding, then putting into a die, and closing a blank holder; step 3: filling a cavity of a female die with an ultra-low temperature medium to cool the sheet to below −160° C.; step 4: applying a set blank holding force by the blank holder, and enabling a male die to go down to form a thin-walled curved part; and step 5: opening the die and taking out the formed thin-walled curved part. The present invention utilizes the favorable formability of the high-strength aluminum alloy at the ultra-low temperature and the instability resistance of the thick sheet.

    Device for super cryogenic forming of metal thin-walled curved surface part

    公开(公告)号:US11440076B2

    公开(公告)日:2022-09-13

    申请号:US17474752

    申请日:2021-09-14

    Abstract: The present disclosure provides a device for super cryogenic forming of a metal thin-walled curved surface part, including a super cryogenic medium conveying and pressurizing unit, a press, a die unit and a control system. A blank holder cylinder, a blank holder slide, a deep drawing cylinder and a deep drawing slide are disposed on the press. The die unit includes a male die, a blank holder and a female die. The super cryogenic medium conveying and pressurizing unit includes an autoboosting cryogenic container. A cryogenic channel in the blank holder, a cryogenic channel in the female die and a cavity of the female die are communicated with an outlet of the autoboosting cryogenic container by cryogenic pipes, respectively. A cryogenic pump is disposed on the cryogenic pipe between the cavity of the female die and the autoboosting cryogenic container.

    Method for pressure forming of aluminum alloy special-shaped tubular component by using ultra low temperature medium

    公开(公告)号:US10960452B2

    公开(公告)日:2021-03-30

    申请号:US16499993

    申请日:2018-12-10

    Abstract: The present invention discloses a method for pressure forming of an aluminum alloy special-shaped tubular component by using an ultra-low temperature medium. By means of the characteristics that the forming property of an aluminum alloy tube is greatly improved under ultra-low temperature conditions, a tube is cooled and pressurized in a die through an ultra-low temperature medium, so that the tube forms a special-shaped tubular component at an ultra-low temperature. In the method for pressure forming of an aluminum alloy special-shaped tubular component by using an ultra-low temperature medium, the ultra-low temperature medium is not only used for cooling the die and the tube, but also used for pressurization to achieve flexible loading of the tube, which is favorable for forming complex special-shaped tubular components with varied cross-sections.

Patent Agency Ranking