Abstract:
Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95° C.; and carbonizing the resulting product by heating it to a temperature of 500-3000° C.
Abstract:
Disclosed are polymeric compositions with improved electrical breakdown strength. The polymeric compositions contain a poly-α-olefin and a voltage-stabilizing agent, which comprises an organic carboxylic ester comprising at least one aromatic ring and from 1 to 2 carboxylic alkyl ester substituents. Alternatively, the voltage-stabilizing agent can comprise trioctyl trimellitate. The present polymeric compositions exhibit improved electrical breakdown strength when applied as an insulating and/or shielding layer for power cables.
Abstract:
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95 C, (d) an ∀-olefin content of at least about 15 and less than about 50 wt % based on the weight of the polymer, (e) a Tg of less than about −35 C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/∀-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked.
Abstract:
An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0.90 grams per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.
Abstract:
An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0.90 grams per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.
Abstract:
Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95° C.; and carbonizing the resulting product by heating it to a temperature of 500-3000° C.
Abstract:
Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95° C.; and carbonizing the resulting product by heating it to a temperature of 500-3000° C. Carbon fibers made according to these methods are also disclosed herein.
Abstract:
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95 C, (d) an ∀-olefin content of at least about 15 and less than about 50 wt % based on the weight of the polymer, (e) a Tg of less than about −35 C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/∀-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked.
Abstract:
Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95° C.; and carbonizing the resulting product by heating it to a temperature of 501-3000° C. Carbon fibers prepared according to these methods are also disclosed herein.
Abstract:
An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0.90 grams per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.