摘要:
In the construction of a multilayer film in which an ethylene-based polymer layer is joined to one another layer by a polyurethane (PU) adhesive, the rate of cure and the degree of cure of the PU adhesive are accelerated by incorporating into the ethylene-based polymer layer a functional compound with active hydrogens, e.g., a polyol, and/or a cure catalyst, e.g., an amine, zinc or tin-based compound. The catalyst and reactive functionality may be present on the same molecule (e.g. alkoxylated amine or zinc ricinoleate). The catalyst and isocyanate reactive compound will migrate into the PU adhesive over time and accelerate the rate and promote the degree of PU adhesive cure, and the functional compound will promote the migration of the cure catalyst into the PU adhesive. In turn, this accelerated cure inhibits the migration of residual, monomeric amines from the PU adhesive into and through the ethylene-based polymer.
摘要:
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95 C, (d) an ∀-olefin content of at least about 15 and less than about 50 wt % based on the weight of the polymer, (e) a Tg of less than about −35 C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/∀-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked.
摘要:
An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0.90 grams per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.
摘要:
An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0.90 grams per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.
摘要:
The present disclosure provides a coextruded multilayer film. The coextruded multilayer film includes a core component having from 10 to 1000 alternating layers of layer A and layer B. Layer A has a thickness from 30 nm to 1000 nm and includes a polymer selected from an ethylene/a-olefin copolymer, an ethylene vinyl acetate polymer (EVA), an ethylene methyl-acrylate copolymer (EMA), an ethylene n-butyl acetate polymer (EnBA), and combinations thereof. Layer B has a thickness from 30 nm to 1000 nm. Layer B is a blend composed of (i) a polymer selected from an ethylene-based polymer, an EVA, an EMA, an EnBA, and combinations thereof, and (ii) a particulate filler material. The core component has a water vapor transmission rate from 50 to less than 500 g-mil/m2/24 hr and a carbon dioxide transmission rate from 50,000 to 300,000 cc-mil/m2/24 hr/atm.
摘要:
The present disclosure provides a coextruded multilayer film. The coextruded multilayer film includes a core component having from 10 to 1000 alternating layers of layer A and layer B. Layer A has a thickness from 30 nm to 1000 nm and includes a polymer selected from an ethylene/a-olefin copolymer, an ethylene vinyl acetate polymer (EVA), an ethylene methyl-acrylate copolymer (EMA), an ethylene n-butyl acetate polymer (EnBA), and combinations thereof. Layer B has a thickness from 30 nm to 1000 nm. Layer B is a blend composed of (i) a polymer selected from an ethylene-based polymer, an EVA, an EMA, an EnBA, and combinations thereof, and (ii) a particulate filler material. The core component has a water vapor transmission rate from 50 to less than 500 g-mil/m2/24 hr and a carbon dioxide transmission rate from 50,000 to 300,000 cc-mil/m2/24 hr/atm.
摘要:
An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0.90 grams per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.
摘要:
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95 C, (d) an ∀-olefin content of at least about 15 and less than about 50 wt % based on the weight of the polymer, (e) a Tg of less than about −35 C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/∀-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked.
摘要:
The present disclosure provides a flexible container. In an embodiment, the flexible container includes A. a front panel, a rear panel, a first gusseted side panel, and a second gusseted side panel, the gusseted side panels adjoining the front panel and the rear panel along peripheral seals to form a chamber, each panel is a multilayer film having at least three layers, each multilayer film comprising (i) an outermost layer comprising a high density polyethylene (HDPE) having a density from greater than 0.94 g/cc to 0.98 g/cc, (ii) a core layer comprising a core ethylene-based polymer having a density from 0.908 g/cc to less than 0.93 g/cc, (iii) an innermost seal layer comprising a seal ethylene-based polymer having a density from 0.86 g/cc to 0.92 g/cc; and B. each panel includes a bottom face comprising two opposing peripheral tapered seals, each peripheral tapered seal extending from a respective peripheral seal.
摘要:
Provided is a method of storing persimmons comprising the step of exposing persimmons to an atmosphere that contains a cyclopropene compound, wherein either (a) the persimmons are in a modified-atmosphere package during exposure to the cyclopropene compound, or (b) the persimmons are placed into a modified-atmosphere package after exposure to the cyclopropene compound, and the persimmons remain in the modified atmosphere package for at least two hours. In some embodiments, the modified-atmosphere package is constructed so that the transmission rate of oxygen for the entire package is from 200 to 40,000 cubic centimeters per day per kilogram of persimmons.