CARBON FIBER SURFACE OILING AGENT CHANGING APPARATUS

    公开(公告)号:US20180179698A1

    公开(公告)日:2018-06-28

    申请号:US15389707

    申请日:2016-12-23

    发明人: CHIH-YUNG WANG

    摘要: A carbon fiber surface oiling agent changing apparatus includes a feeding module, a receiving module, a desizing module, a plasma surface treatment module, and a sizing module. A carbon fiber yarn released from the feeding module is sequentially processed at a predetermined speed to perform the steps of desizing, plasma surface treatment, sizing, and so on, in a relatively more active and reliable manner. Particularly, the surface of the carbon fiber yarn is roughened and is provided with functional groups, which is beneficial to achieve high-quality interface bonding of the carbon fiber yarn and the matrix resin in the subsequent sizing step, thereby enhancing the characteristics of carbon fiber composite materials.

    NANOCARBON COMPOSITE CARBON FIBER WITH LOW COST AND HIGH PERFORMANCE AND THEIR PREPARATION METHOD
    4.
    发明申请
    NANOCARBON COMPOSITE CARBON FIBER WITH LOW COST AND HIGH PERFORMANCE AND THEIR PREPARATION METHOD 审中-公开
    低成本,高性能的纳米碳复合碳纤维及其制备方法

    公开(公告)号:US20160348283A1

    公开(公告)日:2016-12-01

    申请号:US15162052

    申请日:2016-05-23

    IPC分类号: D01F9/22

    CPC分类号: D01F9/225 D01F1/10 D01F11/16

    摘要: The present disclosure relates to a preparation method for lowering a production cost of a high performance carbon fiber using a nanocarbon composite carbon fiber precursor fiber crosslinked by electron beam. More particularly, the present disclosure relates to a preparation method of a nanocarbon composite carbon fiber, including a nanocarbon containing step for containing nanocarbon in a structure of a carbon fiber precursor fiber, a nanocarbon composite carbon fiber precursor fiber preparation step for forming a composite of the nanocarbon and the carbon fiber precursor fiber by electron beam irradiation to enable crosslinking for improved heat resistance of the carbon fiber precursor fiber containing the nanocarbon, an oxidation•stabilization step for oxidizing•stabilizing the nanocarbon composite carbon fiber precursor fiber, and a carbonization step for carbonizing the oxidized•stabilized nanocarbon composite carbon fiber precursor fiber, and a nanocarbon composite carbon fiber prepared by the preparation method.

    摘要翻译: 本公开涉及使用通过电子束交联的纳米碳复合碳纤维前体纤维降低高性能碳纤维的生产成本的制备方法。 更具体地说,本公开内容涉及纳米碳复合碳纤维的制备方法,其包括在碳纤维前体纤维的结构中含有纳米碳的纳米碳含有步骤,用于形成碳纤维前体纤维的纳米碳复合碳纤维前体纤维制备步骤 所述纳米碳和碳纤维前体纤维通过电子束照射来实现交联,以提高含有纳米碳的碳纤维前体纤维的耐热性,用于氧化稳定纳米碳复合碳纤维前体纤维的氧化稳定步骤和碳化步骤 用于碳化氧化稳定的纳米碳复合碳纤维前体纤维,以及通过制备方法制备的纳米碳复合碳纤维。

    PRODUCTION METHOD OF ELECTRICALLY CONDUCTIVE GRAPHENE COMPOSITE FIBER
    6.
    发明申请
    PRODUCTION METHOD OF ELECTRICALLY CONDUCTIVE GRAPHENE COMPOSITE FIBER 审中-公开
    电导率石墨复合纤维的生产方法

    公开(公告)号:US20150104642A1

    公开(公告)日:2015-04-16

    申请号:US14577609

    申请日:2014-12-19

    IPC分类号: D01D5/06 D01F9/12

    摘要: A graphene composite fiber includes graphene sheets and a polymer for aggregating the graphene sheets together. The polymer includes either or both of a hyperbranched polymer and polyvinyl alcohol. The graphene sheets and the polymer are stacked on each other to form a layered structure, and the graphene sheets are regularly arranged along an axial direction of the graphene composite fiber. In a production method of the graphene composite fiber, a graphene oxide is used as a raw material, which significantly improves tensile strength of the graphene composite fiber. Addition of the polymer provides good tenacity for the composite fiber. In a spinning process, rotated coagulant is used to increase a tensile force of a gelatinous fiber, so that the gelatinous fiber has high orientation and tacticity, thereby significantly improving strength of an obtained solid fiber. The final reduction process restores electrical conductivity of a graphene fairly well.

    摘要翻译: 石墨烯复合纤维包括石墨烯片和用于将石墨烯片聚集在一起的聚合物。 聚合物包括超支化聚合物和聚乙烯醇中的一种或两种。 石墨烯片和聚合物彼此堆叠以形成层状结构,并且石墨烯片沿着石墨烯复合纤维的轴向规则地排列。 在石墨烯复合纤维的制造方法中,使用氧化石墨烯作为原料,显着提高了石墨烯复合纤维的拉伸强度。 添加聚合物为复合纤维提供了良好的韧性。 在纺丝过程中,旋转的凝结剂用于增加凝胶状纤维的张力,使得凝胶状纤维具有高取向和立构规整度,从而显着提高所得固体纤维的强度。 最终的还原过程相当好地恢复了石墨烯的电导率。