Abstract:
A system and method for capturing current information for a power converter is disclosed. The current monitoring system includes a control system operably connected to a circuit having a plurality of semiconductor switches that are controllable to convert an input power to an output power having a desired voltage and current. The control system includes a PWM signal generator to generate switching signals that control switching of the switches, gate drivers to facilitate switching of the switches, and desaturation circuits to provide overcurrent protection to the switches. The control system further includes a processor that receives voltage data from the desaturation circuits regarding a measured voltage across each of the switches, determines a current through each of the switches based on the voltage across each respective switch, and calculates an input current to the circuit or an output current of the circuit based on the determined currents through the switches.
Abstract:
An adjustable speed drive (ASD) circuit includes a rectifier bridge to convert an AC power input to a DC power, a DC link coupled to the rectifier bridge to receive the DC power, a DC link capacitor bank comprising at least first and second capacitors connected to the DC link, each capacitor having a capacitor voltage thereacross, and a protection circuit including a detection circuit configured to detect a short circuit on one or more of the first and second capacitors of the DC link capacitor bank and generate an action signal upon detection of a short circuit on one or more of the first and second capacitors of the DC link capacitor bank. The ASD circuit also includes an action circuit in operable communication with the detection circuit and configured to cause a short circuit across the DC link upon receiving the action signal from the detection circuit.
Abstract:
A control and protection apparatus for an electric motor, comprising an inverter (3), a first converter (1), a temperature detection apparatus (7), and a second converter (2). The first converter (1) is used for generating, on the basis of an input signal, a first control signal to control working of the inverter (3). The temperature detection apparatus (7) is used for detecting the temperature of the electric motor (4) and for acquiring a temperature signal. The second converter (2) is used for generating a second control signal on the basis of the temperature signal detected and for providing the second control signal to the inverter (3). The inverter (3) is used for controlling wording of the electric motor (4) on the basis of the first control signal and of the second control signal. The control and protection apparatus for the electric motor is low in costs and high in safety and reliability.
Abstract:
A system and method for capturing current information for a power converter is disclosed. The current monitoring system includes a control system operably connected to a circuit having a plurality of semiconductor switches that are controllable to convert an input power to an output power having a desired voltage and current. The control system includes a PWM signal generator to generate switching signals that control switching of the switches, gate drivers to facilitate switching of the switches, and desaturation circuits to provide overcurrent protection to the switches. The control system further includes a processor that receives voltage data from the desaturation circuits regarding a measured voltage across each of the switches, determines a current through each of the switches based on the voltage across each respective switch, and calculates an input current to the circuit or an output current of the circuit based on the determined currents through the switches.
Abstract:
A variable frequency drive (VFD) circuit includes an input connectable to an AC source, a rectifier to convert an AC power input to a DC power, a DC link to receive DC power from the rectifier and having a DC link voltage thereon, a DC link capacitor bank with one or more capacitors connected to the DC link, and a pre-charge circuit coupled to the DC link capacitor. The pre-charge circuit further includes one or more resistors, one or more pre-charge relays each operable in on and off states to selectively control a current flow through the resistor(s) so as to control an initial pre-charge of the DC link capacitor, and an overvoltage relay operable in on and off states to selectively cut-off a current flow to the DC link capacitor bank, so as to prevent an overvoltage condition in the DC link capacitor bank.
Abstract translation:变频驱动(VFD)电路包括可连接到AC电源的输入端,将AC电源输入转换为DC电力的整流器,DC链路以从整流器接收DC电力并且具有DC链路电压; DC 链路电容器组与连接到DC链路的一个或多个电容器以及耦合到DC链路电容器的预充电电路。 预充电电路还包括一个或多个电阻器,一个或多个预充电继电器,每个可工作在导通和截止状态,以选择性地控制通过电阻器的电流,以便控制DC的初始预充电 连接电容器和可操作于导通和截止状态的过电压继电器,以选择性地截断到DC链路电容器组的电流,以便防止DC链路电容器组中的过电压状态。
Abstract:
An ASD circuit includes an input, solid-state switch rectifier bridge, DC link, and DC link capacitor bank. A pre-charge circuit is coupled between the input and the DC link capacitor bank and includes pre-charge relays operable in an on state that allows the AC power input to power the rectifier bridge during a normal operating state and an off state that allows the AC power input to pre-charge the DC link capacitor bank through a pre-charge resistor of the pre-charge circuit during a pre-charge operating state. A protection relay of a protection circuit is coupled between the pre-charge relays and the DC link capacitor bank, the protection relay operable in an on state that prevents the pre-charge circuit from connecting to the DC link capacitor bank when a capacitor short circuit occurs and an off state that allows the pre-charge circuit to electrically connect to the DC link capacitor bank.
Abstract:
A variable frequency drive (VFD) circuit includes an input connectable to an AC source, a rectifier to convert an AC power input to a DC power, a DC link to receive DC power from the rectifier and having a DC link voltage thereon, a DC link capacitor bank with one or more capacitors connected to the DC link, and a pre-charge circuit coupled to the DC link capacitor. The pre-charge circuit further includes one or more resistors, one or more pre-charge relays each operable in on and off states to selectively control a current flow through the resistor(s) so as to control an initial pre-charge of the DC link capacitor, and an overvoltage relay operable in on and off states to selectively cut-off a current flow to the DC link capacitor bank, so as to prevent an overvoltage condition in the DC link capacitor bank.
Abstract:
An adjustable speed drive (ASD) circuit includes a rectifier bridge to convert an AC power input to a DC power, a DC link coupled to the rectifier bridge to receive the DC power, a DC link capacitor bank comprising at least first and second capacitors connected to the DC link, each capacitor having a capacitor voltage thereacross, and a protection circuit including a detection circuit configured to detect a short circuit on one or more of the first and second capacitors of the DC link capacitor bank and generate an action signal upon detection of a short circuit on one or more of the first and second capacitors of the DC link capacitor bank. The ASD circuit also includes an action circuit in operable communication with the detection circuit and configured to cause a short circuit across the DC link upon receiving the action signal from the detection circuit.