Abstract:
The disclosure relates to a filter circuit on an electric motor which has electrical connections at a connection end for connection to a supply voltage (U). The filter circuit consists of at least one capacitor bridge arranged between the connections of the electric motor for radio interference suppression. For increased electromagnetic compatibility (EMC), the filter circuit is arranged on a circuit board and held on the connection end of the electric motor. The circuit board has a capacitor bridge with interference suppression capacitors, which is connected between the electrical connections of the electric motor, wherein an interference suppression capacitor has a longitudinal axis between its electrical connections in the longitudinal direction. The interference suppression capacitors are arranged on the circuit board with their longitudinal axes aligned in different spatial directions.
Abstract:
A system includes a prime mover configured to rotate a shaft. The system also includes a wound rotor induction generator (WRIG). The WRIG includes a rotor coupled to the shaft of the prime mover and configured to rotate when the shaft rotates, where the rotor includes a rotor winding. The WRIG also includes a stator winding electrically connected to a utility source and a load. When the stator winding receives first power from the utility source, the WRIG is configured to transform at least one of a voltage and a frequency of the first power before outputting at least a portion of the first power to the load. When the stator winding does not receive the first power from the utility source, the WRIG is configured to generate second power due to kinetic energy of the rotor and output at least a portion of the second power to the load.
Abstract:
A generator, in particular of a wind power installation, for generating electric current, comprising a rotor and a stator having stator teeth and grooves arranged between said stator teeth for receiving at least one stator winding, wherein a measuring device is provided to determine the deflection of at least one stator tooth of the stator in connection with the generator, wherein the measuring device is connected to at least one measuring unit, which is embodied as a strain gauge.
Abstract:
A direct drive drive actuator includes a base structure and a driven structure that is journally supported and translatable relative to the base structure. The driven structure is disposed in a fixed spacial relationship to the base structure. A plurality of first pole arrays is disposed on the driven structure. A plurality of second pole arrays, corresponding in number to the plurality of first pole arrays is disposed on the base structure. An electrical power source is provided. A controller is coupled to the power source and the first plurality of pole arrays and the second plurality of pole arrays, wherein the controller is configured to selectively electrically energized windings of the first plurality of pole arrays and the second plurality of pole arrays such that an electro-magnetic force is formed between poles of the first plurality of pole arrays and poles of the second plurality of pole arrays. The driven structure is translatable relative to the base structure responsive to the electro-magnetic force.
Abstract:
An electric motor includes a main winding coupled to a first line terminal, and first and second boost windings coupled in series to the main winding. A high-speed lead wire is coupled to a first tap between the main winding and the first boost winding, a medium-speed lead wire is coupled to a second tap between the first boost winding and the second boost winding, and a low-speed lead wire is coupled to a third tap after the second boost winding. A start winding has a first end coupled to the first line terminal and a second end. A capacitor has a first end series-coupled to the second end of the start winding and a second end coupled to the second tap. A switch coupled to a second line terminal is configured to couple the second line terminal to one of the high, medium, and low-speed lead wires.
Abstract:
Entry of a synchronous speed of a rotor can be facilitated by increasing a starting torque by adjusting a magnetization application time for magnetizing the rotor according to whether or not a starting capacitor is used. The present invention includes: a control unit that outputs a control signal for controlling an application time of a magnetizing current according to whether or not a starting capacitor is used; and a switch that supplies power to an exciting coil according to the control signal outputted from the control unit.
Abstract:
A driving circuit for improving starting of a hybrid induction motor and its method includes a capacitor for operation electrically connected between a main coil and a auxiliary-coil, and a starting and current cutting-off means electrically connected with the capacitor for operation, applying a high starting current to a motor in starting, and cutting off the starting current when the motor is operated at a synchronous speed after the starting, so that a satisfactory starting characteristic can be obtained by increasing output under a low voltage state in starting, and effective operation can be performed by decreasing output under a normal operation state after the starting is completed.
Abstract:
A dynamoelectric machine constructed for speed and accuracy of manufacturing has a stator core constructed of 90.degree. symmetrical stator laminations and the windings have differing numbers of poles which overlap in slots of the stator core are wound of the core formed by the laminations in unique fashion. The rotor bars of the machine are skewed to optimize performance of the machine when in the form of a single phase induction motor. Magnet wire leads of the windings are connected directly to terminals on a plug and terminal assembly which is formed for positive location on an end frame of the machine without welding or other fastening to the end frame. The end frames of the machine and stator laminations forming the stator core are formed so as to increase the precision of the final position of the stator relative to the rotor assembly of the dynamoelectric machine. The end frames are constructed for grounding without the use of fasteners or wire. The engagement of the end frames with the stator core is employed as the basis for alignment of the machine components.
Abstract:
A method for fabricating an induction motor rotor lamination includes using an indexed notching die to punch a plurality of closed rotor slots at different distances from a center point of rotation by punching a first rotor slot, changing the position of a center point of the rotor lamination with respect to the notching die, and punching a second rotor slot. In another embodiment, a plurality of rotor slit patterns are punched using a variable depth indexed notching die including at least two rotor slit punching portions, one being deeper than another, by punching a first rotor slit pattern, changing the depth of closure of the notching die, and punching a second rotor slit pattern with the second rotor slit pattern having a different number of rotor slits than the first. In another embodiment, each rotor slit is open to and off center with respect to its respective rotor slot, and rotor laminations are stacked by positioning some of the rotor laminations in an orientation with is turned over and rotated with respect to others of the rotor laminations; filling the rotor slots and the rotor slits with cage material; and machining outer surfaces of the rotor laminations. In another embodiment, uniformly spaced identical rotor slots are punched and modulation is created by punching a contoured outside diameter or by inserting slot wedges of molded magnetic material.
Abstract:
A device for automatically shutting off a current is used in combination with a motor start-up component incorporated in a motor-driving circuit including an auxiliary coil which operates at a start-up time of a motor and a main coil for its steady-state operation. This motor start-up component includes a motor start-up thermistor with positive temperature characteristic having a first electrode and a second electrode, a first connector member having a first male terminal part and connected to the first electrode and a second connector member having a second male terminal part and connected to the second electrode. The motor start-up thermistor is connected in series to the auxiliary coil through the first electrode. The current-shutting device includes first and second terminal members each having a female terminal part for receiving a corresponding one the male terminal parts, a triac having a first triac terminal, a second triac terminal and a gate terminal, a triac-controlling thermistor with positive temperature characteristic and a case which encloses at least the triac and the triac-controlling thermistor.