Abstract:
There are provided methods and devices for determining a quality parameter characterizing an optical communication signal, the methods being performed by signal detection devices. At the transmitting end, there are obtained a signal power P1 of a first optical signal, a signal power P2 of a second optical signal, a signal power P3 of a third optical signal, optionally a signal power P4 of a fourth optical signal, and a total signal power Ps of a channel where the first, second, third and optional fourth optical signals are located. At a detection point, there are further obtained a signal power P1′ of the first optical signal, a signal power P2′ of the second optical signal, a signal power P3′ of the third optical signal and optionally a signal power P4′ of the fourth optical signal. There are then determined a signal deformation factor SDF and/or an optical signal to ASE noise ratio OSNR from the obtained signal powers.
Abstract:
There is provided a modal distribution conditioner comprising the combination of a mandrel-wrapped optical fiber and an adjustable and fixable loop of optical fiber. It is noted that light entering the modal distribution conditioner is to be generally overfilled compared with the target encircled flux function (as defined by the Standard). The mandrel wrapping introduces macrobends to the optical fiber, inducing modal pre-filtering that roughly transforms the initially overfilled modal distribution to be close to compliance with the appropriate Standard. However, the modal distribution of light having traversed the fixed mandrel typically remains somewhat overfilled. The adjustable loop provides for the fine-tuning of the modal distribution, in conformity with the Standard. Once the requirements defined by the Standard are met, the adjustable loop may be secured in place such that modal distribution becomes fixed and remain stable.
Abstract:
There are herein provided methods and systems to characterize optical propagation characteristics of an optical fiber communication link (such as, e.g., a submarine line system), including ASE noise (such as traditional OSNRASE), non-linear noise (such as OSNRNL due to nonlinear distortions) and/or the GOSNR. The method uses a polarized probe signal in the optical transmission channel under test in order to probe the link under test, as well as power loading light in other optical transmission channels in order to activate non-linear effects. The propagated test signal is then analyzed under varied polarization conditions using a varied-SOP polarization-resolved optical spectrum analysis of the propagated probe signal.
Abstract:
Methods and systems are disclosed for characterizing a polarization-dependent loss or gain (PDL/G) of an optical device under test (DUT), such as an optical fiber link, from an optical signal having passed through the optical DUT. The optical signal is substantially unpolarized upon entering the optical DUT. The method can include varying a state of polarization (SOP) of the optical signal over a plurality of sampled SOP conditions to produce a respective plurality of SOP-varied optical signals; performing a polarization-analysis and detection operation on the plurality of SOP-varied optical signals to acquire a respective plurality of detected signal sets, each detected signal set including at least one polarization-analyzed detected signal; and determining, as the PDL/G of the optical DUT, a polarization extinction ratio parameter representative of a ratio of maximum to minimum power levels measured among the polarization-analyzed detected signals of the plurality of detected signal sets.
Abstract:
There is herein provided a method for measuring the GOSNR that can be implemented using commercial-grade transceivers and which accounts for linear optical impairments (e.g. PMD, PDL and CD) and transceiver intrinsic impairments. The method may be implemented using an Optical Spectrum Analyzer (OSA) and either the system transceivers or other commercial-grade transceivers. The proposed measurement method is based on mixed optical and electronic technologies, using an OSA and a transceiver pair. By measuring a signal quality metric Qm and the OSNR under varied power and ASE noise conditions, a constant value RBW that relates the GOSNR to the signal quality metric Qm is derived. The GOSNR is then obtained from these results.
Abstract:
There is provided a method and an apparatus for determining quality parameters on a polarization-multiplexed optical signal based on an analysis of the power spectral density of the Signal-Under-Test (SUT). The method is predicated upon knowledge of the spectral shape of the signal in the absence of significant noise or spectral deformation. This knowledge is provided by a reference optical spectrum trace. Based on this knowledge and under the assumption that ASE noise level is approximately constant in wavelength over a given spectral range, the spectral deformation of the signal contribution of the SUT may be estimated using a comparison of the spectral variations of the optical spectrum trace of the SUT with that of the reference optical spectrum trace.
Abstract:
There is provided an optical loss testing system for multi-fiber array cables an optical loss test method and a reference method therefor which overcomes at least part of the multi-powermeter uncertainty. A prior calibration step serves to characterize the relative difference in optical power response of the multiple power meters. This relative difference can then be used to correct the optical loss measurement so as to eliminate its effect.
Abstract:
There are provided herein test instruments, devices and methods for measuring the optical power loss of optical-fiber devices under test, and particularly those terminated with multifiber connectors, which allows for a one-cord or one-cord equivalent reference method whichever the pinning of the actual optical-fiber device under test. There is proposed to add an optical-fiber expansion device to convert the pinning of the input interface of the power meter instrument from pinned to unpinned or vice-versa, while not adding extra measurement uncertainty. This is accomplished using a patch cord which core diameter is between that of the device under test and that of the input interface of the power meter instrument.
Abstract:
Method and systems for characterizing an optical signal propagating along a communication link are disclosed. The signal includes a data-carrying signal contribution, modulated at a symbol frequency, and a noise contribution. The method includes measuring an optical power spectrum of the signal, which includes a data-carrying signal spectrum component and a noise spectrum component. The method also includes determining a measured spectral correlation function within pairs of spectral components of the signal as a function of center frequency of the pairs, the spectral components in each pair being spectrally separated from each other by the symbol frequency. The method further includes obtaining a solution for the data-carrying signal spectrum component based on the measured optical power spectrum, such that a calculated spectral correlation function based on the solution matches the measured spectral correlation function. In some embodiments, the spectral correlation function is measured as a low-frequency beatnote amplitude function.
Abstract:
There is provided a method to discriminate NLE-induced signal deformation from ASE-noise on polarization multiplexed signals, in order to measure the OSNR under NLE conditions and/or characterize the NLE-induced signal deformation. In accordance with one aspect, the method is based on the acquisition of optical spectrum traces when the (data-carrying) optical communication signal is partially or completely extinguished (ASE-noise only), as well as with a live optical communication signal. Comparing traces acquired with different conditions and/or at different dates allows discrimination of the signal contribution, the ASE-noise contribution and the NLE-induced deformations on the SUT.