Abstract:
A flow diverter for an air separator of a gas turbine includes a cylindrical body configured to fit within a cooling hole of the air separator. One or more air flow vents are defined through and around a partial circumference of the cylindrical body. A bottom panel closes the cylindrical body at one end. A mounting flange surrounds the cylindrical body at an open end and extends radially outward from the cylindrical body. When the flow diverter is installed, air flows through the open end in a radial direction and exits through the air flow vents in an axial direction. The cylindrical body may include a collapsible region that collapses to engage the air separator and prevent the flow diverter from being dislodged. The air separator may additionally or alternately include supplemental cooling holes in a recessed area proximate to its mounting flange.
Abstract:
A mold system for forming a casting article for investment casting in which the mechanical integrity of a ceramic core can be tested by viscosity manipulation. A method for testing a ceramic core used for an investment casting includes: positioning the ceramic core within a mold for receiving a sacrificial material fluid to form a sacrificial material on at least a portion of the ceramic core, the ceramic core having a predefined layout; during casting of the sacrificial material fluid about the ceramic core using the mold, controlling a viscosity of the sacrificial material fluid to simulate an expected viscosity of a molten metal used during a subsequent investment casting using the ceramic core; and evaluating mechanical damage to at least one region of the ceramic core caused by the casting of the sacrificial material fluid.
Abstract:
A method for fabricating a ceramic composite includes forming a first ceramic composite layer (CCL), positioning a form against the first CCL, positioning a second CCL against the form such that the form is at least partially circumscribed by the first CCL and the second CCL. The method also includes coupling the first CCL to the second CCL, such that at least a first passage extends in a first direction across at least a portion of the ceramic composite component and is defined at least partially by the first CCL and the second CCL in a location vacated by the first form.
Abstract:
Systems and methods for measuring fouling in a gas turbine compressor include a conductivity resistance sensor disposed in a compressor inlet mouth. The degree of compressor fouling is correlated to changes in resistance measured by the conductivity resistance sensor. Measurements of resistance changes are converted to an indicia of fouling and used to trigger cleaning of the compressor.
Abstract:
Various aspects include a composite component (also known as a Shear Enabled Regionally Engineered Facet (SEREF)) and methods of forming such a component. In some cases, a method includes: forming a slot in a main body of a metal alloy component, the slot extending at least partially through a wall of the metal alloy component, the forming of the slot including forming an angled main body interface in the wall of the metal alloy component; forming a coupon for coupling with the slot in the metal alloy component, the coupon having an angled coupon interface complementing the angled main body interface; and brazing the coupon to the main body at the slot to form a composite component.
Abstract:
Various aspects include a composite component (also known as a Shear Enabled Regionally Engineered Facet (SEREF)) and methods of forming such a component. In some cases, a method includes: forming a slot in a main body of a metal alloy component, the slot extending at least partially through a wall of the metal alloy component, the forming of the slot including forming an angled main body interface in the wall of the metal alloy component; forming a coupon for coupling with the slot in the metal alloy component, the coupon having an angled coupon interface complementing the angled main body interface; and brazing the coupon to the main body at the slot to form a composite component.
Abstract:
Various aspects include a composite component (also known as a Shear Enabled Regionally Engineered Facet (SEREF)) and methods of forming such a component. In some cases, a method includes: forming a slot in a main body of a metal alloy component, the slot extending at least partially through a wall of the metal alloy component, the forming of the slot including forming an angled main body interface in the wall of the metal alloy component; forming a coupon for coupling with the slot in the metal alloy component, the coupon having an angled coupon interface complementing the angled main body interface; and brazing the coupon to the main body at the slot to form a composite component.
Abstract:
An article includes at least one first portion, wherein the at least one first portion is additively manufactured by depositing successive layers of one or more materials upon a surface such that a three dimensional structure is obtained; at least one second portion affixed the at least one first portion, the at least one second portion including a substantially planar member, and further including at least one bottom surface and at least one top surface; and at least one third portion, wherein the at least one third portion is additively manufactured by depositing successive layers of one or more materials upon the at least one top surface such that a three dimensional structure is obtained.
Abstract:
Laser cladding systems include a metal-filled wire comprising a metal shell surrounding a metal-filled core, wherein the metal-filled core comprises at least one of a powder metal or a fine wire metal, and, a laser that produces a laser beam directed onto at least a portion of a tip of the metal-filled wire to melt the metal shell and metal-filled core to produce a molten pool for depositing on a substrate.
Abstract:
A mold system for forming a casting article for investment casting in which the mechanical integrity of a ceramic core can be tested by viscosity manipulation. A method for testing a ceramic core used for an investment casting includes: positioning the ceramic core within a mold for receiving a sacrificial material fluid to form a sacrificial material on at least a portion of the ceramic core, the ceramic core having a predefined layout; during casting of the sacrificial material fluid about the ceramic core using the mold, controlling a viscosity of the sacrificial material fluid to simulate an expected viscosity of a molten metal used during a subsequent investment casting using the ceramic core; and evaluating mechanical damage to at least one region of the ceramic core caused by the casting of the sacrificial material fluid.