Abstract:
Universal vortex generators for wind turbine rotor blades and methods of manufacturing same are disclosed. The vortex generator includes a base portion configured for attachment to at least one of a suction side surface or a pressure side surface of the rotor blade and at least one airflow modifying element extending from the base portion. In addition, the airflow modifying element includes one or more discontinuities configured therein so as to increase flexibility of the vortex generator.
Abstract:
The present invention is directed to a rotor blade assembly for a wind turbine. The rotor blade assembly includes a rotor blade extending from a blade root to a blade tip. The rotor blade has a pressure side surface and a suction side surface. The pressure side surface and the suction side surface each extend between a leading edge and a trailing edge. The assembly also includes a blade root extension configured to attach to one of the pressure side surface or the suction side surface of the rotor blade adjacent to the blade root. The blade root extension includes at least one blade fence and at least one airflow modifying element. The blade fence extends between a proximal end and a distal end in a chord-wise direction. The proximal end is configured to attach to the rotor blade such that the distal end remains free and spaced apart from the rotor blade. The airflow modifying element is configured at the proximal end of the blade fence. As such, the blade root extension is configured to improve aerodynamic performance of the rotor blade.
Abstract:
The present invention is directed to a rotor blade assembly for a wind turbine. The rotor blade assembly includes a rotor blade extending from a blade root to a blade tip. The rotor blade has a pressure side surface and a suction side surface. The pressure side surface and the suction side surface each extend between a leading edge and a trailing edge. The assembly also includes a blade root extension configured to attach to one of the pressure side surface or the suction side surface of the rotor blade adjacent to the blade root. The blade root extension includes at least one blade fence and at least one airflow modifying element. The blade fence extends between a proximal end and a distal end in a chord-wise direction. The proximal end is configured to attach to the rotor blade such that the distal end remains free and spaced apart from the rotor blade. The airflow modifying element is configured at the proximal end of the blade fence. As such, the blade root extension is configured to improve aerodynamic performance of the rotor blade.
Abstract:
An energy audit tool for a wind turbine power system includes a data collector module configured for temporary connection to an existing turbine controller of the existing wind turbine power system. The data collector module is configured to collect operating data of the existing wind turbine power system. The energy audit tool also includes a model simulator module configured for analyzing the collected operating data, generating a model of the existing wind turbine power system based on the collected operating data, and determining an energy loss of the existing wind turbine power system from the model of the existing wind turbine power system.
Abstract:
The present disclosure is directed to a method for controlling a wind turbine using an adjusted aerodynamic performance map. In one embodiment, the method includes monitoring at least one of an actual wind parameter or operating data of the wind turbine using one or more sensors. Further, the method includes determining an adjustment factor for the aerodynamic performance map based, at least in part, on either or both of the measured actual wind parameter or the wind turbine operating data. Moreover, the method includes applying the adjustment factor to a first aerodynamic performance map to obtain an adjusted aerodynamic performance map. Thus, the method also includes controlling the wind turbine based on the adjusted aerodynamic performance map.
Abstract:
A wind turbine blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge, each extending between a blade tip and a root. The rotor blade additionally defining a span and a chord. The blade assembly further includes a plurality of micro boundary layer energizers positioned on a surface of the pressure side of the rotor blade. The plurality of micro boundary layer energizers extending one of above or below a neutral plane of the rotor blade. The micro boundary layer energizers are shaped and positioned chordwise to delay separation of a boundary layer at a low angle of attack. A wind turbine including the blade assembly is additionally disclosed.
Abstract:
The present subject matter directed to a rotor blade assembly for a wind turbine having at least one rotatable aerodynamic surface feature configured thereon. The rotor blade assembly includes a body shell including a pressure side surface and a suction side surface extending between a leading edge and a trailing edge. The aerodynamic surface feature is disposed adjacent to the pressure side surface, the suction side surface, and/or both. In addition, the surface feature may have a generally airfoil-shaped cross section. As such, an actuator can be configured at least partially within an internal volume of the surface feature, the actuator being configured to rotate the surface feature relative to the body shell.
Abstract:
The present subject matter directed to a rotor blade assembly for a wind turbine having at least one rotatable aerodynamic surface feature configured thereon. The rotor blade assembly includes a body shell including a pressure side surface and a suction side surface extending between a leading edge and a trailing edge. The aerodynamic surface feature is disposed adjacent to the pressure side surface, the suction side surface, and/or both. In addition, the surface feature may have a generally airfoil-shaped cross section. As such, an actuator can be configured at least partially within an internal volume of the surface feature, the actuator being configured to rotate the surface feature relative to the body shell.
Abstract:
An energy audit tool for a wind turbine power system includes a data collector module configured for temporary connection to an existing turbine controller of the existing wind turbine power system. The data collector module is configured to collect operating data of the existing wind turbine power system. The energy audit tool also includes a model simulator module configured for analyzing the collected operating data, generating a model of the existing wind turbine power system based on the collected operating data, and determining an energy loss of the existing wind turbine power system from the model of the existing wind turbine power system.
Abstract:
The present disclosure is directed to a method for controlling a wind turbine using an adjusted aerodynamic performance map. In one embodiment, the method includes monitoring at least one of an actual wind parameter or operating data of the wind turbine using one or more sensors. Further, the method includes determining an adjustment factor for the aerodynamic performance map based, at least in part, on either or both of the measured actual wind parameter or the wind turbine operating data. Moreover, the method includes applying the adjustment factor to a first aerodynamic performance map to obtain an adjusted aerodynamic performance map. Thus, the method also includes controlling the wind turbine based on the adjusted aerodynamic performance map.