Abstract:
The present disclosure describes an embodiment that provides a tangible, non-transitory, computer-readable medium storing instructions executable by a processor of an endoscope. The instructions include instructions to capture, using an imager in the endoscope, a first plurality of images at a first brightness level while a live video based at least in part on the first plurality of images is displayed, generate, using the processor, a baseline image by averaging or summing the first plurality of images, capture, using the imager, a second plurality of images at a plurality of brightness levels, in which the plurality of brightness levels are different from the first brightness level, and generate, using the processor, a high dynamic range image based at least in part on the baseline image and the second plurality of images, in which the high dynamic range image comprises more unsaturated pixels than the baseline image.
Abstract:
Systems and methods provided herein. In one embodiment, a system includes a mobile device comprising a display screen. The system further includes a non-destructive testing (NDT) device comprising a camera configured to capture image data, video data, or a combination thereof, and a wireless system configured to communicate the image data, the video data, an overlay data or a combination thereof, to the mobile device; wherein the mobile device is configured to visually display the image data, the video data, the overlay data, or the combination thereof, on the display screen.
Abstract:
Systems and methods provided herein. In one embodiment, a system includes a mobile device comprising a display screen. The system further includes a non-destructive testing (NDT) device comprising a camera configured to capture image data, video data, or a combination thereof, and a wireless system configured to communicate the image data, the video data, an overlay data or a combination thereof, to the mobile device; wherein the mobile device is configured to visually display the image data, the video data, the overlay data, or the combination thereof, on the display screen.
Abstract:
A system includes a portable non-destructive testing (NDT) device. The NDT device includes a processor configured to receive imaging data captured via a sensor of the NDT device, cause a display of the NDT device to display an image to be analyzed based on the imaging data, and cause the display to display a graphical user interface (GUI). The GUI includes a first plurality of user-selectable objects. Each of the first plurality of user-selectable objects is configured to activate one or more monitoring functions of the NDT device. The processor is also configured to cause the display to display at least a first set of the first plurality of user-selectable objects. The first set of the first plurality of user-selectable objects is configured to substantially overlay the image. The first set of the first plurality of user-selectable objects is displayed based at least in part on an inspection state of the NDT device.
Abstract:
A system includes an image capture device configured to capture an image of at least a portion of an industrial device or machinery. The system also includes a display configured to display the image. The system further includes a processor communicatively coupled to the image capture device and the display and configured to cause the display to display a graphical user interface (GUI) on the display, wherein the GUI comprises a first indicator located in user selectable first portion of the display and a window configured to display a portion of the image corresponding to a location of the first indicator, wherein the processor is configured to cause the first indicator to move to a second portion of the display in response to receiving an indication of a user interaction with the window.
Abstract:
A method and system for detecting a known measurable object feature using a video inspection system. The method and system displays an image of a viewed object and detects a known measurable object feature on the viewed object. The method and system then displays a set of available measurement types including a measurement type associated with the detected known measurable object feature and/or automatically positions a plurality of measurement markers on the displayed image based on the measurement type associated with the detected known measurable object feature.
Abstract:
A method of operating an inspection device includes collecting a plurality of successive image frames using an image sensor of the inspection device and displaying the plurality of successive image frames on a display of the inspection device. The method includes processing, via a processor of the inspection device, each image frame of the plurality of successive image frames by determining a motion parameter of each respective image frame and adding each respective image frame to a frame buffer when the respective image frame is motion free. The method includes receiving a control signal from a user interface of the inspection device requesting an image frame output. The method further includes determining, via the processor of the inspection device, a noise-reduced image frame from the frame buffer in response to the control signal and outputting the noise-reduced image frame in response to the control signal.
Abstract:
Systems and methods provided herein. In one embodiment, a borescope system includes a probe to capture images and a display a settings menu, measurements, the images captured by the probe, or any combination thereof. In addition, the borescope system a processor programmed to display a user interface to enable a user to control movement of the probe, adjust settings, navigate menus, make selections, or any combination thereof. The processor is communicatively coupled to the probe, and the display, and is programmed to instruct the borescope to enter a live menu view when an articulation mode is selected from the settings menu. In the live menu view, the processor is programmed to instruct the display to display the images captured by the probe, and to enable a user to control the movement of the probe and adjust articulation sensitivity of the probe while viewing the images on the display.
Abstract:
A system includes a portable non-destructive testing (NDT) device. The NDT device includes a processor configured to receive imaging data captured via a sensor of the NDT device, cause a display of the NDT device to display an image to be analyzed based on the imaging data, and cause the display to display a graphical user interface (GUI). The GUI includes a first plurality of user-selectable objects. Each of the first plurality of user-selectable objects is configured to activate one or more monitoring functions of the NDT device. The processor is also configured to cause the display to display at least a first set of the first plurality of user-selectable objects. The first set of the first plurality of user-selectable objects is configured to substantially overlay the image. The first set of the first plurality of user-selectable objects is displayed based at least in part on an inspection state of the NDT device.
Abstract:
Systems and methods provided herein. In one embodiment, a system includes a mobile device comprising a display screen. The system further includes a non-destructive testing (NDT) device comprising a camera configured to capture image data, video data, or a combination thereof, and a wireless system configured to communicate the image data, the video data, an overlay data or a combination thereof, to the mobile device; wherein the mobile device is configured to visually display the image data, the video data, the overlay data, or the combination thereof, on the display screen.