Abstract:
A UV-IR combination curing system and method for manufacture and repair of composite parts, such as for use in wind blade manufacture and repair. The system and method utilize UV and IR dual radiation sources to cure glass fiber reinforced laminates containing a photo initiator. The UV and IR dual radiation sources can be configured as discrete stand-alone UV and IR lamps used in a side by side configuration, a plurality of UV lamps with thermal IR radiation, a combined UV/IR lamp, or other forms of light sources providing both UV and IR radiation. To achieve high glass transition and complete curing of thick laminates, the IR radiation source is initially turned on to heat the laminate to close to 40° C.-100° C. before the UV radiation source is turned on. The IR radiation source can be turned off after UV radiation source is activated.
Abstract:
A monolithically integrated cadmium telluride (CdTe) photovoltaic (PV) module includes a first electrically conductive layer and an insulating layer. The first electrically conductive layer is disposed below the insulating layer. The PV module further includes a back contact metal layer and a CdTe absorber layer. The back contact metal layer is disposed between the insulating layer and the CdTe absorber layer. The PV module further includes a window layer and a second electrically conductive layer. The window layer is disposed between the CdTe absorber layer and the second electrically conductive layer. At least one first trench extends through the back contact metal layer, at least one second trench extends through the absorber and window layers, and at least one third trench extends through the second electrically conductive layer. A method for monolithically integrating CdTe PV cells is also provided.
Abstract:
A UV-IR combination curing system and method for manufacture and repair of composite parts, such as for use in wind blade manufacture and repair. The system and method utilize UV and IR dual radiation sources to cure glass fiber reinforced laminates containing a photo initiator. The UV and IR dual radiation sources can be configured as discrete stand-alone UV and IR lamps used in a side by side configuration, a plurality of UV lamps with thermal IR radiation, a combined UV/IR lamp, or other forms of light sources providing both UV and IR radiation. To achieve high glass transition and complete curing of thick laminates, the IR radiation source is initially turned on to heat the laminate to close to 40° C.-100° C. before the UV radiation source is turned on. The IR radiation source can be turned off after UV radiation source is activated.