Abstract:
A method and system determine, during movement of a vehicle system along a route, a tractive load demanded by the vehicle system to propel the vehicle system along the route. The vehicle system includes a propulsion-generating vehicle having plural individually controllable traction motors. A first selected set of the traction motors for deactivation is identified during the movement of the vehicle system along the route based at least in part on the tractive load demanded by the vehicle system. The traction motors in the first selected set are deactivated while at least one of the traction motors in a first remaining set of the traction motors continues to generate tractive effort to propel the vehicle system. The traction motors that are selected for deactivation may all be on the same vehicle in the vehicle system, or may be on different vehicles of the same vehicle system.
Abstract:
A vehicle control system controls operation of motors of a vehicle and determines whether there is sufficient stored electric energy to power the vehicle through an unpowered segment of a route. The controller changes operation of the vehicle to ensure that the vehicle can travel completely through the unpowered segment by switching which energy storage device provides energy, changing vehicle speed, changing motor torque, changing which route is traveled on, selecting fewer motors to power the vehicle, requesting rendezvous with a recharging vehicle, running the energy storage devices in a degraded mode, initiating a motor to generate power to aid in propulsion and/or recharge the energy storage devices, selecting a different route, controlling the vehicle to draft or mechanically couple to another vehicle, and/or controlling the vehicle to gain momentum or to generate an overcharge.
Abstract:
A vehicle control system controls operation of motors of a vehicle and determines whether there is sufficient stored electric energy to power the vehicle through an unpowered segment of a route. The controller changes operation of the vehicle to ensure that the vehicle can travel completely through the unpowered segment by switching which energy storage device provides energy, changing vehicle speed, changing motor torque, changing which route is traveled on, selecting fewer motors to power the vehicle, requesting rendezvous with a recharging vehicle, running the energy storage devices in a degraded mode, initiating a motor to generate power to aid in propulsion and/or recharge the energy storage devices, selecting a different route, controlling the vehicle to draft or mechanically couple to another vehicle, and/or controlling the vehicle to gain momentum or to generate an overcharge.
Abstract:
A method and system determine, during movement of a vehicle system along a route, a tractive load demanded by the vehicle system to propel the vehicle system along the route. The vehicle system includes a propulsion-generating vehicle having plural individually controllable traction motors. A first selected set of the traction motors for deactivation is identified during the movement of the vehicle system along the route based at least in part on the tractive load demanded by the vehicle system. The traction motors in the first selected set are deactivated while at least one of the traction motors in a first remaining set of the traction motors continues to generate tractive effort to propel the vehicle system. The traction motors that are selected for deactivation may all be on the same vehicle in the vehicle system, or may be on different vehicles of the same vehicle system.
Abstract:
A method and system determine, during movement of a vehicle system along a route, a tractive load demanded by the vehicle system to propel the vehicle system along the route. The vehicle system includes a propulsion-generating vehicle having plural individually controllable traction motors. A first selected set of the traction motors for deactivation is identified during the movement of the vehicle system along the route based at least in part on the tractive load demanded by the vehicle system. The traction motors in the first selected set are deactivated while at least one of the traction motors in a first remaining set of the traction motors continues to generate tractive effort to propel the vehicle system. The traction motors that are selected for deactivation may all be on the same vehicle in the vehicle system, or may be on different vehicles of the same vehicle system.
Abstract:
A method and system determine, during movement of a vehicle system along a route, a tractive load demanded by the vehicle system to propel the vehicle system along the route. The vehicle system includes a propulsion-generating vehicle having plural individually controllable traction motors. A first selected set of the traction motors for deactivation is identified during the movement of the vehicle system along the route based at least in part on the tractive load demanded by the vehicle system. The traction motors in the first selected set are deactivated while at least one of the traction motors in a first remaining set of the traction motors continues to generate tractive effort to propel the vehicle system. The traction motors that are selected for deactivation may all be on the same vehicle in the vehicle system, or may be on different vehicles of the same vehicle system.
Abstract:
A system is provided for determining a quality of a location estimation of a powered system at a location. The system includes a first sensor configured to measure a first parameter of the powered system at the location. The system further includes a second sensor configured to measure a second parameter of the powered system at the location. The system further includes a second controller configured to determine the location estimation of the powered system and the quality of the location estimation, based upon a first location of the powered system based on the first parameter, and a second location of the powered system based on the second parameter of the powered system. A method is also provided for determining a quality of a location estimation of a powered system at a location.
Abstract:
A system is provided for determining a quality of a location estimation of a powered system at a location. The system includes a first sensor configured to measure a first parameter of the powered system at the location. The system further includes a second sensor configured to measure a second parameter of the powered system at the location. The system further includes a second controller configured to determine the location estimation of the powered system and the quality of the location estimation, based upon a first location of the powered system based on the first parameter, and a second location of the powered system based on the second parameter of the powered system. A method is also provided for determining a quality of a location estimation of a powered system at a location.