Abstract:
The systems and methods described herein relate to electrical circuits. A system (e.g., inverter current system) is provided. The system includes plural inverters connected to a common bus and at least one capacitor. The inverters are configured to convert a direct current (DC) through the common bus to an alternating current (AC), by alternating different switches of the inverters between open and closed states in a respective switching cycle for each of the inverters. The system includes a controller circuit. The controller circuit is configured to adjust a current conducted onto the common bus to the inverters so that a root mean square of the current meets one or more designated criteria. The controller circuit controls the inverters to apply a frequency shift to the respective switching cycle of one or more of the inverters.
Abstract:
A power converter control system includes a first power converter, at least one additional power converter, a first control module, and an additional control module. The first power converter receives direct current and outputs alternating current as a first power output. The additional power converter receives direct current and outputs alternating current as an additional power output. The first control module controls timing of events of the first power converter. The additional control module is associated with the additional power converter and controls timing of events of the additional power converter. The first control module communicates first information regarding the timing of the first power converter to the additional control module. The additional control module is configured to adjust the timing of the additional power converter to correspond with the timing of the first power converter.
Abstract:
A system and method for examining a route and/or vehicle system obtain a route parameter and/or a vehicle parameter from discrete examinations of the route and/or the vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the route and/or the vehicle system are separated from each other by location and/or time. The route parameter and/or the vehicle parameter are examined to determine whether the route and/or the vehicle system is damaged and, responsive to determining that the route and/or the vehicle is damaged, the route and/or the vehicle system are continually monitored, such as by examination equipment onboard the vehicle system.
Abstract:
A system includes a plurality of wheels, a braking system, and one or more sensors. The plurality of wheels includes a guardian wheel and at least one non-guardian wheel and is disposed on a wheeled vehicle. The braking system is operatively connected to the guardian and non-guardian wheels and applies a first braking force to the at least one non-guardian wheel and a second braking force to the guardian wheel. The second braking force increases a slide risk of the guardian wheel beyond a slide risk of the at least one non-guardian wheel. One or more sensors disposed within the wheeled vehicle detect sliding of the guardian wheel allowing a corrective action to be taken to prevent sliding of the at least one non-guardian wheel.
Abstract:
An energy management system and method for a vehicle system operate the vehicle system according to a current trip plan as the vehicle system travels along a route during a trip. The current trip plan designates operational settings of the vehicle system. The system and method also revise the current trip plan into a revised trip plan responsive to current, actual operation of the vehicle system differing from the current trip plan by at least a designated threshold amount. The revised trip plan designates operational settings of the vehicle system and includes an initial designated operational setting that matches the current, actual operation of the vehicle system.
Abstract:
An energy management system and method for a vehicle system operate the vehicle system according to a current trip plan as the vehicle system travels along a route during a trip. The current trip plan designates operational settings of the vehicle system. The system and method also revise the current trip plan into a revised trip plan responsive to current, actual operation of the vehicle system differing from the current trip plan by at least a designated threshold amount. The revised trip plan designates operational settings of the vehicle system and includes an initial designated operational setting that matches the current, actual operation of the vehicle system.
Abstract:
A method for controlling a vehicle system includes determining a vehicle reference speed using an off-board-based input speed and an onboard-based input speed. The off-board-based input speed is representative of a moving speed of the vehicle system and is determined from data received from an off-board device. The onboard-based input speed is representative of the moving speed of the vehicle system and is determined from data obtained from an onboard device. The method includes using the vehicle reference speed to at least one of measure wheel creep for one or more wheels of the vehicle system or control at least one of torques applied by or rotational speeds of one or more motors of the vehicle system.
Abstract:
A system includes an engine and a controller. The engine is capable of multiple operating modes, and each mode has a relatively different fuel ratio such that as the engine is changed from a first operating mode having a first ratio of a first fuel to a second fuel to a second operating mode having a second ratio of the first fuel to the second fuel. The controller is operable to change the engine from one operating mode to another operating mode.
Abstract:
A method for acoustically examining a route includes sensing passively excited residual sounds of a vehicle system during travel over a route, examining the passively excited residual sounds to identify one or more changes of interest in the passively excited residual sounds, and identifying a section of the route as being damaged responsive to the one or more changes of interest in the passively excited residual sounds that are identified.
Abstract:
A system and method control a powered system having an engine configured to operate using a plurality of fuel types. A first set of control signals including a first set of valve signals are communicated to each fuel tank based at least in part on a first stored engine operating profile to control amounts of fuel provided from each fuel tank to the engine. A different, second set of control signals including a second set of valve signals are communicated to the fuel tanks based at least in part on a second stored engine operating profile to control or change the amounts of fuel from each fuel tank to the engine. The system and method can switch between operating conditions associated with different external domains to alter the engine operating profile used to control the fuel or fuels supplied to the engine.