Abstract:
A method for operating a wind turbine to avoid stall during derating thereof includes providing an initial pitch setting for one or more rotor blades of the wind turbine. Further, the method includes operating the wind turbine based on a rated power curve with the one or more rotor blades fixed at the initial pitch setting. Further, the method includes identifying at least one condition of the wind turbine that is indicative of stall. The method also includes derating the wind turbine. Further, the method includes modifying the initial pitch setting to an updated pitch setting when the at least one condition is identified.
Abstract:
The present disclosure is directed to a system and method for mitigating ice throw from one or more rotor blades of a wind turbine during operation. The method includes monitoring one or more ice-related parameters of the wind turbine. Thus, the ice-related parameters are indicative of ice accumulation on one or more of the rotor blades. In response to detecting ice accumulation, the method also includes implementing an ice protection control strategy. More specifically, the ice protection control strategy includes determining a yaw position of the wind turbine and determining at least one of a power set point or a speed set point for the wind turbine based on the yaw position.
Abstract:
A method for operating a wind turbine to avoid stall during derating thereof includes providing an initial pitch setting for one or more rotor blades of the wind turbine. Further, the method includes operating the wind turbine based on a rated power curve with the one or more rotor blades fixed at the initial pitch setting. Further, the method includes identifying at least one condition of the wind turbine that is indicative of stall. The method also includes derating the wind turbine. Further, the method includes modifying the initial pitch setting to an updated pitch setting when the at least one condition is identified.
Abstract:
A method for operating a wind turbine for generating electrical energy is provided comprising the steps as described below. The wind turbine comprises a nacelle being rotatably supported on a tower of the wind turbine, in particular wherein at least one tower cable is provided in the tower for electrically connecting the nacelle and/or components thereof to e.g. an electrical installation on a ground of the tower. In one step of the method an early untwist operation for untwisting the tower cables of the wind turbine is initiated at a first specific time. In addition, a future power generation of the wind turbine is predicted for a certain prediction period at least by analyzing a prediction of the wind, in particular by analyzing at least wind direction forecast information and/or wind speed forecast information. The first specific time for initiating the early untwist operation is determined such that an overall predicted energy generation of the wind turbine over the certain prediction period is maximized or that a predicted energy loss caused by an untwist operation is minimized.
Abstract:
The present disclosure is directed to a system and method for controlling a wind turbine during adverse wind conditions. In one embodiment, the method includes monitoring one or more wind conditions near the wind turbine. Another step includes detecting one or more adverse wind conditions near the wind turbine. In response to detecting one or more adverse wind conditions, the method also includes reducing a power output of the wind turbine by a predetermined percentage. Further, the predetermined percentage is a function of a number and a type of the detected adverse wind conditions occurring during a predetermined time period.
Abstract:
The present disclosure is directed to a system and method for controlling a wind turbine during adverse wind conditions. In one embodiment, the method includes monitoring one or more wind conditions near the wind turbine. Another step includes detecting one or more adverse wind conditions near the wind turbine. In response to detecting one or more adverse wind conditions, the method also includes reducing a power output of the wind turbine by a predetermined percentage. Further, the predetermined percentage is a function of a number and a type of the detected adverse wind conditions occurring during a predetermined time period.