Abstract:
The present invention relates to a method and controller for heating a wind turbine blade that comprises a plurality of heating zones. An icing factor is determined based on environmental conditions and one or more heating zones are determined based on the determined icing factor, wherein each heating zone comprises one or more Electro-Thermal Heating Elements. The one or more Electro-Thermal Heating Elements corresponding to the determined heating zones are activated to generate heat.
Abstract:
A method for controlling heating of rotor blades of an aerodynamic rotor of a wind turbine, wherein, the heating of the rotor blades is initiated, if icing of the rotor blades is expected, wherein according to an icing criteria, if icing is expected is evaluated depending on a determined ambient temperature, a determined relative humidity, and a determined wind speed, each defining a determined weather parameter, and further according to the icing criteria, if icing is expected is evaluated depending on a temporal change of at least one of these weather parameters and/or of at least one other weather parameter.
Abstract:
A method for controlling a wind turbine connected to an electrical grid includes receiving, via a controller, a state estimate of the wind turbine. The method also includes determining, via the controller, a current condition of the wind turbine using, at least, the state estimate, the current condition defining a set of condition parameters of the wind turbine. Further, the method includes receiving, via the controller, a control function from a supervisory controller, the control function defining a relationship of the set of condition parameters with at least one operational parameter of the wind turbine. Moreover, the method includes dynamically controlling, via the controller, the wind turbine based on the current condition and the control function for multiple dynamic control intervals.
Abstract:
An apparatus and method for reducing wind turbine damage includes a propeller having a plurality of blades projecting radially from a hub. The blades may be adjustably combined to form variable cross-sections that either increase or decrease propeller rotation speed dependent on wind speed and weather conditions.
Abstract:
A wind turbine including a torque distribution device for distributing torque between two different shafts. Also a system for detecting the presence of snow/ice on a wind turbine using ultrasound sensors and a system for de-icing wind turbines in which when the removal of snow/ice is detected, the heaters are switched off. Also a wind turbine with a lightning sensor and a processing unit which can shut down sub-systems or the whole system in response to data from the lightning sensor. Also a wind turbine with an automated lubrication refill system for replenishing the lubricant in one or more components of the turbine. Also a wind farm comprising a plurality of wind turbines in which at least one wind turbine is communicatively coupled to at least one other wind turbine.
Abstract:
A method for operating a wind energy system is provided comprising the steps of setting the value of an operational parameter of the wind energy system, measuring a yield parameter of the wind energy system and measuring a condition parameter. Further, the method comprises the step of calculating an optimized value of the operational parameter based on historical data and the outcome of the measurements. The method further comprises the step of resetting the operational parameter to the optimized value of the operational parameter wherein the resetting is such that the yield parameter is optimized. Further, a wind energy system is provided having a sensor unit for measuring a yield parameter of the wind energy system, a sensor for measuring a condition parameter, an actuator for adjustment of at least one adjustable part of the wind energy system, and a self-learning controller. The self-learning controller is connected to the sensor unit and the actuator and receives measurement data from the sensor unit. The self-learning controller performs optimization calculations based on the measurement data and sends instruction signals to the actuator based on the outcome of the optimization calculations for the adjustment of the adjustable part of the wind energy system. The instruction signals are such that the yield parameter is optimized.
Abstract:
A method for operating a wind energy system is provided comprising the steps of setting the value of an operational parameter of the wind energy system, measuring a yield parameter of the wind energy system and measuring a condition parameter. Further, the method comprises the step of calculating an optimized value of the operational parameter based on historical data and the outcome of the measurements. The method further comprises the step of resetting the operational parameter to the optimized value of the operational parameter wherein the resetting is such that the yield parameter is optimized. Further, a wind energy system is provided having a sensor unit for measuring a yield parameter of the wind energy system, a sensor for measuring a condition parameter, an actuator for adjustment of at least one adjustable part of the wind energy system, and a self-learning controller. The self-learning controller is connected to the sensor unit and the actuator and receives measurement data from the sensor unit. The self-learning controller performs optimization calculations based on the measurement data and sends instruction signals to the actuator based on the outcome of the optimization calculations for the adjustment of the adjustable part of the wind energy system. The instruction signals are such that the yield parameter is optimized.
Abstract:
A method for controlling heating of rotor blades of an aerodynamic rotor of a wind turbine, wherein, the heating of the rotor blades is initiated, if icing of the rotor blades is expected, wherein according to an icing criteria, if icing is expected is evaluated depending on a determined ambient temperature, a determined relative humidity, and a determined wind speed, each defining a determined weather parameter, and further according to the icing criteria, if icing is expected is evaluated depending on a temporal change of at least one of these weather parameters and/or of at least one other weather parameter.
Abstract:
A first aspect of the invention provides a method of controlling a rotor of a wind turbine, the method comprising: obtaining a determination of whether there is ice on the rotor; obtaining one or more factors; generating an ice likelihood based on the obtained one or more factors, wherein the ice likelihood is indicative of whether it is likely that ice is building up on the rotor or thawing on the rotor; generating a confidence level based on the determination and the ice likelihood, wherein the confidence level provides an indication of the confidence that the determination is true; and controlling the wind turbine based on the confidence level.
Abstract:
The invention is directed to a method for operating a pitch-controlled wind turbine having a rotor blade adjustable about its longitudinal axis and having a generator wherein a set-point for a generator torque (M) is specified in dependence upon a rotational speed (n) of the generator or of the rotor. A transition point (n3, M3) is provided whereat a switchover occurs from a part-load operation to a full-load operation. In the method, a value for air density (ρ) is determined and a pre-pitch angle (φpre) is set starting at a pre-pitch rotational speed (n4) less than the rotational speed (n3) at the transition point (n3, M3). The value of the pre-pitch angle (φpre) is dependent on the value determined for the air density (ρ) so that a larger pre-pitch angle is set when the air density is lower than when the air density is higher.