Abstract:
The present disclosure is directed to a system and method for controlling a wind turbine during adverse wind conditions. In one embodiment, the method includes monitoring one or more wind conditions near the wind turbine. Another step includes detecting one or more adverse wind conditions near the wind turbine. In response to detecting one or more adverse wind conditions, the method also includes reducing a power output of the wind turbine by a predetermined percentage. Further, the predetermined percentage is a function of a number and a type of the detected adverse wind conditions occurring during a predetermined time period.
Abstract:
The present disclosure is directed to a system and method for controlling a wind turbine during adverse wind conditions. In one embodiment, the method includes monitoring one or more wind conditions near the wind turbine. Another step includes detecting one or more adverse wind conditions near the wind turbine. In response to detecting one or more adverse wind conditions, the method also includes reducing a power output of the wind turbine by a predetermined percentage. Further, the predetermined percentage is a function of a number and a type of the detected adverse wind conditions occurring during a predetermined time period.
Abstract:
An electrical system for controlling a wind turbine is provided. The electrical system includes a first resistive element, a storage element and a controller. The first resistive element and the storage element are coupled to a DC link of the wind turbine. The controller is used for switching between the first resistive element and the storage element in response to a grid side fault condition to minimize mechanical loads induced by the grid side fault condition.