Abstract:
A power generation system utilizing a fuel cell is described. The system includes a fuel cell having an anode configured to generate a tail gas. The anode includes an inlet and an outlet. The system further includes a fuel path configured to divert a first portion of the anode tail gas to the inlet of the anode; and a second portion of the anode tail gas to a reciprocating engine. The associated reciprocating engine is at least partially powered by the second portion of the anode tail-gas. Another embodiment of the invention is directed to a power generation system that includes the anode and an external fuel reforming system, along with a gas splitting mechanism to divide the reformed fuel into two streams. One stream is directed back to the fuel cell anode, while another stream is used to completely or partially power an external or internal combustion engine.
Abstract:
A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.
Abstract:
A power generation system includes a fuel cell including an anode that generates a tail gas. The system also includes a hydrocarbon fuel reforming system that mixes a hydrocarbon fuel with the fuel cell tail gas and to convert the hydrocarbon fuel and fuel tail gas into a reformed fuel stream including CO2. The reforming system further splits the reformed fuel stream into a first portion and a second portion. The system further includes a CO2 removal system coupled in flow communication with the reforming system. The system also includes a first reformed fuel path coupled to the reforming system. The first path channels the first portion of the reformed fuel stream to an anode inlet. The system further includes a second reformed fuel path coupled to the reforming system. The second path channels the second portion of the reformed fuel stream to the CO2 removal system.
Abstract:
A power generation system including a first fuel cell configured to generate a first anode tail gas stream is presented. The system includes at least one fuel reformer configured to receive the first anode tail gas stream, mix the first anode tail gas stream with a reformer fuel stream to form a reformed stream; a splitting mechanism to split the reformed stream into a first portion and a second portion; and a fuel path configured to circulate the first portion to an anode inlet of the first fuel cell, such that the first fuel cell is configured to generate a first electric power, at least in part, by using the first portion as a fuel. The system includes a second fuel cell configured to receive the second portion, and to generate a second electric power, at least in part, by using the second portion as a fuel.
Abstract:
A method for preparing an electrolyte separator for an electrochemical device is described. The method includes the step of applying a beta″-alumina coating composition, or a precursor thereof, to a porous substrate, by an atmospheric, thermal spray technique. An electrochemical device is also described. Some of these devices include an anode, a cathode, and an electrolyte separator disposed between the anode and the cathode. The separator includes a thermally-sprayed layer of beta″-alumina, disposed on a porous substrate. The electrochemical device can be used as an energy storage system, or for other types of end uses.
Abstract:
The present application provides combined cycle fuel cell systems that include a fuel cell, such as a solid-oxide fuel cell (SOFC), comprising an anode that generates a tail gas and a cathode that generates cathode exhaust. The system or plant may include adding fuel, such as processed or refined tail gas, to the inlet air stream of a reformer to heat the reformer. The system or plant may include removing water from the tail gas and recycling the removed water into an inlet fuel stream. The inlet air stream may be the cathode exhaust stream of the fuel cell, and the inlet fuel stream may be input hydrocarbon fuel that is directed to the reformer to produce hydrogen-rich reformate. The system or plant may direct some of the processed or refined tail gas to a bottoming cycle.
Abstract:
A power generation system including a first fuel cell configured to generate a first anode tail gas stream is presented. The system includes at least one fuel reformer configured to receive the first anode tail gas stream, mix the first anode tail gas stream with a reformer fuel stream to form a reformed stream; a splitting mechanism to split the reformed stream into a first portion and a second portion; and a fuel path configured to circulate the first portion to an anode inlet of the first fuel cell, such that the first fuel cell is configured to generate a first electric power, at least in part, by using the first portion as a fuel. The system includes a second fuel cell configured to receive the second portion, and to generate a second electric power, at least in part, by using the second portion as a fuel.
Abstract:
An alloy and method of forming the alloy are provided. The alloy includes a matrix phase, and a population of particulate phases dispersed within the matrix. The matrix includes iron and chromium; and the population includes a first subpopulation of particulate phases and a second subpopulation of particulate phases. The first subpopulation of particulate phases include a complex oxide, having a median size less than about 20 mu, and present in the alloy in a concentration from about 0. 1 volume percent to about 5 volume percent. The second subpopulation of particulate phases have a median size in a range from about 30 nm to about 10 microns, and present in the alloy in a concentration from about 1 volume percent to about 15 volume percent.
Abstract:
A power generation system utilizing a fuel cell is described. The system includes a fuel cell having an anode configured to generate a tail gas. The anode includes an inlet and an outlet. The system further includes a fuel path configured to divert a first portion of the anode tail gas to the inlet of the anode; and a second portion of the anode tail gas to a reciprocating engine. The associated reciprocating engine is at least partially powered by the second portion of the anode tail-gas. Another embodiment of the invention is directed to a power generation system that includes the anode and an external fuel reforming system, along with a gas splitting mechanism to divide the reformed fuel into two streams. One stream is directed back to the fuel cell anode, while another stream is used to completely or partially power an external or internal combustion engine.
Abstract:
A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.