Abstract:
A system includes one or more positive fuel cell stacks configured to generate a positive portion of an electric potential and one or more negative fuel cell stacks configured to generate a negative portion of the electric potential. The system includes a positive electrical bus bar conductively coupled with the positive fuel cell stacks and configured to conduct the positive portion of the electric potential from the positive fuel cell stacks to one or more loads. The system includes a negative electrical bus bar conductively coupled with the negative fuel cell stacks and configured to conduct the negative portion of the electric potential from the negative fuel cell stacks to the one or more loads. The positive electrical bus bar is elongated and extends between the positive fuel cell stacks and the negative electrical bus bar is elongated and extends between the negative fuel cell stacks.
Abstract:
A method for operating a power generation system including a fuel-cell is presented. The method includes detecting a water deficient condition of the fuel-cell. The method further includes operating, in response to detecting the water deficient condition of the fuel-cell, at least one auxiliary load of the power generation system via use of an electrical current generated by the fuel-cell to maintain a steam-carbon ratio in the fuel-cell above a threshold steam-carbon ratio value. A control sub-system for operating the power generation system is also presented. Moreover, a power generation system including the fuel-cell, the least one auxiliary load, and the control sub-system is presented.
Abstract:
A cooling system for providing chilled air is disclosed, including a cooling coil; an evaporator and absorber contained within a vacuum chamber; and a desiccant that absorbs water vapor from the cooling process. The system also includes an external heat source for treating the desiccant; along with a regenerator to make the desiccant re-useable. At least one heat exchanger is also included, along with a source of make-up water in communication with the cooling coil. Related processes are also disclosed, along with a gas turbine engine that includes or is arranged in association with the cooling system.
Abstract:
A power generation system includes a fuel cell including an anode that generates a tail gas. The system also includes a hydrocarbon fuel reforming system that mixes a hydrocarbon fuel with the fuel cell tail gas and to convert the hydrocarbon fuel and fuel tail gas into a reformed fuel stream including CO2. The reforming system further splits the reformed fuel stream into a first portion and a second portion. The system further includes a CO2 removal system coupled in flow communication with the reforming system. The system also includes a first reformed fuel path coupled to the reforming system. The first path channels the first portion of the reformed fuel stream to an anode inlet. The system further includes a second reformed fuel path coupled to the reforming system. The second path channels the second portion of the reformed fuel stream to the CO2 removal system.
Abstract:
An integrated fuel cell and engine combustor assembly includes an engine combustor having a combustion chamber fluidly coupled with a compressor and a turbine. The assembly also includes a fuel cell stack circumferentially extending around the combustion chamber of the combustor. The fuel cell stack includes fuel cells configured to generate electric current. The fuel cell stack is positioned to receive discharged air from the compressor and fuel from a fuel manifold. The fuel cells in the fuel cell stack generate electric current using the discharged air and at least some of the fuel. The fuel cell stack is positioned to radially direct partially oxidized fuel from the fuel cells into the combustion chamber of the combustor. The combustor combusts the partially oxidized fuel into one or more gaseous combustion products that are directed into and drive the downstream turbine.
Abstract:
A formed substrate assembly includes an air flow form plate, a fuel flow form plate, and an anode. The fuel flow form plate is positioned over the air flow form plate. The fuel flow form plate partially defines a plurality of first channels. The fuel flow form plate also defines a plurality of second channels. The plurality of second channels defines a plurality of apertures, where a portion of the apertures extend from the plurality of second channels to the plurality of first channels. The anode is positioned over the fuel flow form plate. The anode partially defines the plurality of first channels such that the fuel flow form plate and the anode define the plurality of first channels. The portion of the plurality of apertures is configured to channel a flow of fuel from the plurality of second channels to the plurality of first channels.
Abstract:
A method for recovering oil from an oil-bearing formation is presented. The method includes providing a reverse osmosis (RO) unit comprising at least one membrane; feeding a first feed stream having a first salinity content to a first side of the membrane; and feeding a second feed stream having a second salinity content to a second side of the membrane. The method further includes discharging a retentate stream from the first side of the membrane, and discharging a product stream having a controlled salinity content from the second side of the membrane. The method furthermore includes injecting at least a portion of the product stream into the oil-bearing formation, and recovering at least a portion of the oil from the oil-bearing formation. A system for recovering oil from an oil-bearing formation is also presented.
Abstract:
A power generation system utilizing a fuel cell is described. The system includes a fuel cell having an anode configured to generate a tail gas. The anode includes an inlet and an outlet. The system further includes a fuel path configured to divert a first portion of the anode tail gas to the inlet of the anode; and a second portion of the anode tail gas to a reciprocating engine. The associated reciprocating engine is at least partially powered by the second portion of the anode tail-gas. Another embodiment of the invention is directed to a power generation system that includes the anode and an external fuel reforming system, along with a gas splitting mechanism to divide the reformed fuel into two streams. One stream is directed back to the fuel cell anode, while another stream is used to completely or partially power an external or internal combustion engine.
Abstract:
A component includes an outer wall that includes an exterior surface, and at least one plenum defined interiorly to the outer wall and configured to receive a cooling fluid therein. The component also includes a coating system disposed on the exterior surface. The coating system has a thickness. The component further includes a plurality of adaptive cooling openings defined in the outer wall. Each of the adaptive cooling openings extends from a first end inflow communication with the at least one plenum, outward through the exterior surface and to a second end covered underneath at least a portion of the thickness of the coating system.
Abstract:
An integrated fuel cell and engine combustor assembly includes an engine combustor having a combustion chamber fluidly coupled with a compressor and a turbine. The assembly also includes a fuel cell stack circumferentially extending around the combustion chamber of the combustor. The fuel cell stack includes fuel cells configured to generate electric current. The fuel cell stack is positioned to receive discharged air from the compressor and fuel from a fuel manifold. The fuel cells in the fuel cell stack generate electric current using the discharged air and at least some of the fuel. The fuel cell stack is positioned to radially direct partially oxidized fuel from the fuel cells into the combustion chamber of the combustor. The combustor combusts the partially oxidized fuel into one or more gaseous combustion products that are directed into and drive the downstream turbine.