摘要:
A method for creating a form of a non-linear filter suitable for reducing a computational complexity is proposed. The filter is resolved into polyphase components in such a way that the polyphase components can be interchanged with a conversion of the sampling rate of a signal to be sent to the filter or of a signal to be emitted by the filter. Corresponding filters and filter arrangements are also proposed. In this way, a computational complexity for calculating the signal to be emitted by the filter can be significantly simplified. The invention can be used in echo compensation.
摘要:
A method for creating a form of a non-linear filter suitable for reducing a computational complexity is proposed. The filter is resolved into polyphase components in such a way that the polyphase components can be interchanged with a conversion of the sampling rate of a signal to be sent to the filter or of a signal to be emitted by the filter. Corresponding filters and filter arrangements are also proposed. In this way, a computational complexity for calculating the signal to be emitted by the filter can be significantly simplified. The invention can be used in echo compensation.
摘要:
In a method for determining the flow rate of fluids using the ultrasonic transit time method, the flow speed and therefrom the flow rate of the fluid is determined from the transit time of ultrasound signals through the measurement section.In order to take into account the change in the transmission function of the ultrasonic converters, which change acts as a drift of the measurement variable, the transmission function of the measurement section is determined at least approximately, and at least one ultrasonic transit time is corrected by means of a correction value that is determined from the group transit time of the transmission function.
摘要:
A sensor system being is located in an environment composed of a first medium, where waves propagate with a first phase velocity, the sensor system including at least one main enclosure and a sensor array with at least two sensors, said sensor array being arranged inside the main enclosure, wherein the space inside the main enclosure between the sensor array and the inner surface of the main enclosure is filled with a second medium, in which waves propagate with a second phase velocity, the second phase velocity being different from the first velocity.
摘要:
The invention relates to a method for localizing and tracking acoustic sources (101) in a multi-source environment, comprising the steps of recording audio-signals (103) of at least one acoustic source (101) with at least two recording means (104, 105), creating a two- or multi-channel recording signal, partitioning said recording signal into frames of predefined length (N), calculating for each frame a cross-correlation function as a function of discrete time-lag values (τ) for channel pairs (106, 107) of the recording signal, evaluating the cross-correlation function by calculating a sampling function depending on a pitch parameter (f0) and at least one spatial parameter (φ0), the sampling function assigning a value to every point of a multidimensional space being spanned by the pitch-parameter and the spatial parameters, and identifying peaks in said multidimensional space with respective acoustic sources in the multi-source environment.
摘要:
An electrical network having a nonlinear transfer response is approximated with a system with memory. The system with memory being approximated in the frequency domain and subsequently being expanded in the time domain. A transfer response of the system being approximated to a transfer response of the electrical network in a range of a system bandwidth corresponding to an input signal bandwidth. The resulting model has adjustable parameters and can readily be implemented in the form of a dynamically linear filter and a static nonlinearity (B2) connected thereto.
摘要:
In a method for determining the flow rate of fluids using the ultrasonic transit time method, the flow speed and therefrom the flow rate of the fluid is determined from the transit time of ultrasound signals through the measurement section. In order to take into account the change in the transmission function of the ultrasonic converters, which change acts as a drift of the measurement variable, the transmission function of the measurement section is determined at least approximately, and at least one ultrasonic transit time is corrected by means of a correction value that is determined from the group transit time of the transmission function.
摘要:
A model network of a nonlinear circuitry includes one or more static nonlinear elements and a plurality of linear filters with transfer functions. A method for determining the model network includes performing an input amplitude-to-output amplitude measurement of the nonlinear circuitry and performing an input amplitude-to-output phase measurement of the nonlinear circuitry. The transfer functions are calculated on the basis of results of the input amplitude-to-output amplitude measurement and input amplitude-to-output phase measurement.
摘要:
A sensor system is located in an environment composed of a first medium, where waves propagate with a first phase velocity, the sensor system including at least one main enclosure and a sensor array with at least two sensors, said sensor array being arranged inside the main enclosure, wherein the space inside the main enclosure between the sensor array and the inner surface of the main enclosure is filled with a second medium, in which waves propagate with a second phase velocity, the second phase velocity being different from the first velocity.
摘要:
The invention relates to a method for localizing and tracking acoustic sources (101) in a multi-source environment, comprising the steps of recording audio-signals (103) of at least one acoustic source (101) with at least two recording means (104, 105), creating a two- or multi-channel recording signal, partitioning said recording signal into frames of predefined length (N), calculating for each frame a cross-correlation function as a function of discrete time-lag values (τ) for channel pairs (106, 107) of the recording signal, evaluating the cross-correlation function by calculating a sampling function depending on a pitch parameter (f0) and at least one spatial parameter (φ0), the sampling function assigning a value to every point of a multidimensional space being spanned by the pitch-parameter and the spatial parameters, and identifying peaks in said multidimensional space with respective acoustic sources in the multi-source environment.