Abstract:
A method and device for testing a digital-to-analog converter is provided. The method may include configuring a decoder to address an individual unit cell of a plurality of unit cells of a digital-to-analog converter. The configured decoder may select a particular unit cell of the plurality of unit cells for testing. The selected unit cell may have digital and analog circuitry. A bias current of the selected unit cell may be increased. The increased bias current of the selected unit cell may be greater during the testing than during normal operation. A test logic signal may be applied to the selected unit cell. In response to the test logic signal, an output signal may be output from the selected unit cell logic circuitry of the digital-to-analog converter. A device may include logic circuitry configured to select an individual unit cell for testing and a current generating circuitry.
Abstract:
A clock signal for use by a circuit can be switched between clocks glitchlessly. A series of delay devices are connected in series based on an integral timing ratio. The integral timing ratio can be based on a ratio of the one of the clock's frequency or period to the other's frequency or period. When a clock select signal is received, the select signal is qualified and then delayed an amount of time based on the integral timing ratio, using the delay devices. The number of delay devices in each series can be the next largest integer to the integral timing ratio, plus one. The clock signal can then be glitchlessly switched from one clock to the other.
Abstract:
A clock signal for use by a circuit can be switched between clocks glitchlessly. A series of delay devices are connected in series based on an integral timing ratio. The integral timing ratio can be based on a ratio of the one of the clock's frequency or period to the other's frequency or period. When a clock select signal is received, the select signal is qualified and then delayed an amount of time based on the integral timing ratio, using the delay devices. The number of delay devices in each series can be the next largest integer to the integral timing ratio, plus one. The clock signal can then be glitchlessly switched from one clock to the other.
Abstract:
Described is an integrated circuit (IC) that allows for communication between any input/output (I/O) pin and onboard peripherals. Accordingly, the resultant IC can be easily documented and connections between I/O pins and peripherals can be managed for each peripheral independently. The IC may include one or more sets of hardwired connections that provide a connection between of any I/O pin and any onboard peripheral. The hardwired connections may include the use of one or more crossbars. This increases the overall functionality and potential applications for an IC as the only limitation on peripheral connectivity is the number of I/O pins.