摘要:
A method for preparing nylon microspheres is provided, said method comprising steps (1), (2) and (3) or steps (1′), (2) and (3) as follows: (1) a radically polymerizable monomer is dispersed in a molten lactam monomer, and a free radical initiator is added, so that radical polymerization of the radically polymerizable monomer is carried out, to give a mixture of a free radical polymer and the lactam monomer; or (1′) a mixture of a free radical polymer and a molten lactam monomer is provided; and (2) an initiator and an activator, used for anionic ring-opening polymerization of the lactam monomer, are added to the mixture obtained in step (1) wherein the remaining radically polymerizable monomer and water are removed, or to the mixture obtained in step (1′), so that the anionic ring-opening polymerization of the lactam is carried out to give a polymer alloy of the free radical polymer/polyamide; and (3) the free radical polymer in the polymer alloy obtained in step (2) is removed by dissolution, giving nylon microspheres. Nylon microspheres are also provided, wherein the weight average molecular weight of the nylon lies in the range of 10000-300000, and the particle size of the nylon microspheres lies in the range of 0.1-500 μm.
摘要:
A toughened nylon that comprises a matrix nylon and a long-chain nylon is described. The matrix nylon is prepared by the homopolymerization or copolymerization of cyclic lactams monomers and their corresponding amino acids. The structure of said cyclic lactams is represented by Formula (I) and the structure of amino acids is represented by (I′). In Formula (I) and (I′) A is H or alkyl with 1-8 carbon and 3≦n≦11. The long-chain nylon is selected from nylons that contain repeating units having structures represented by Formula (II), (III) or (IV). In Formula (II) D is —(CH2)x—, in which H may be substituted with C1-4 alkyl optionally; E is —(CH2)y— or phenylene, in which H may be substituted with C1-4 alkyl optionally; 4≦x≦34 and 4≦y≦34. In Formula (IV) 5≦u≦34, 5≦v≦34, and u≠v. The proportion of said long-chain nylon in the total weight of toughened nylon is 2-45%. As the toughened nylon has very good interface combination, only one melting peak is detected with differential scanning calorimetry. Besides the preparation process and application of the toughened nylon are described hereafter too.
摘要翻译:描述了包含基质尼龙和长链尼龙的增韧尼龙。 基质尼龙通过环状内酰胺单体及其相应的氨基酸的均聚或共聚制备。 所述环状内酰胺的结构由式(I)表示,氨基酸的结构由(I')表示。 在式(I)和(I')中,A是H或具有1-8个碳和3 <= n <= 11的烷基。 长链尼龙选自含有由式(II),(III)或(IV)表示的结构的重复单元的尼龙。 在式(II)中,D是 - (CH 2 CH 2)x - ,其中H可以被C 1-4烷基任选地取代; E是 - (CH 2)2 - 亚苯基,其中H可以被C 1-4烷基任选地取代; 4 <= x <= 34和4 <= y <= 34。 在式(IV)中,5 <= u <= 34,5 <= v <= 34,u
摘要:
A method for preparing nylon microspheres is provided, said method comprising steps (1), (2) and (3) or steps (1′), (2) and (3) as follows: (1) a radically polymerizable monomer is dispersed in a molten lactam monomer, and a free radical initiator is added, so that radical polymerization of the radically polymerizable monomer is carried out, to give a mixture of a free radical polymer and the lactam monomer; or (1′) a mixture of a free radical polymer and a molten lactam monomer is provided; and (2) an initiator and an activator, used for anionic ring-opening polymerization of the lactam monomer, are added to the mixture obtained in step (1) wherein the remaining radically polymerizable monomer and water are removed, or to the mixture obtained in step (1′), so that the anionic ring-opening polymerization of the lactam is carried out to give a polymer alloy of the free radical polymer/polyamide; and (3) the free radical polymer in the polymer alloy obtained in step (2) is removed by dissolution, giving nylon microspheres. Nylon microspheres are also provided, wherein the weight average molecular weight of the nylon lies in the range of 10000-300000, and the particle size of the nylon microspheres lies in the range of 0.1-500 μm.
摘要:
A toughened nylon that comprises a matrix nylon and a long-chain nylon is described. The matrix nylon is prepared by the homopolymerization or copolymerization of cyclic lactams monomers and their corresponding amino acids. The structure of said cyclic lactams is represented by Formula (I) and the structure of amino acids is represented by (I′). In Formula (I) and (I′) A is H or alkyl with 1-8 carbon and 3≦n≦11. The long-chain nylon is selected from nylons that contain repeating units having structures represented by Formula (II), (III) or (IV). In Formula (II) D is —(CH2)x—, in which H may be substituted with C1-4 alkyl optionally; E is —(CH2)y— or phenylene, in which H may be substituted with C1-4 alkyl optionally; 4≦x≦34 and 4≦y≦34. In Formula (IV) 5≦u≦34, 5≦v≦34, and u≠v. The proportion of said long-chain nylon in the total weight of toughened nylon is 2-45%. As the toughened nylon has very good interface combination, only one melting peak is detected with differential scanning calorimetry. Besides the preparation process and application of the toughened nylon are described hereafter too.