Abstract:
A rotor for a turbomachine and a method of manufacturing the same. The method includes providing a lug with a lug body and an interface material disposed on the lug body. The method also includes friction welding the lug to a hub member via the interface material to define a projected structure for an outer radial area of a disc assembly of the rotor. The projected structure is configured to support a first side of a rotor blade of the rotor in cooperation with a second projected structure of the disc assembly supporting a second side of the rotor blade. The lug body and the hub member are made from different materials.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
A radial turbine rotor associated with an engine includes a disk, and a plurality of blades spaced apart about a perimeter of the disk. Each blade includes a forward end, an aft end and a root. The radial turbine rotor includes a plurality of sectors, with each sector coupled to the root of a respective blade of the plurality of blades. Each sector of the plurality of sectors defines a first surface configured to contact a working fluid and a second surface configured to be coupled to the disk, and each sector of the plurality of sectors defines at least one pocket between the first surface and the second surface proximate the forward end that extends toward the aft end. The radial turbine rotor includes a feather seal slot defined between adjacent sectors of the plurality of sectors proximate the first surface.
Abstract:
An environmental control system (ECS) having particulates in air therein includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects particulates in the air, and generates a particulate concentration signal. The controller: compares the particulate concentration signal to a predicted particulate concentration threshold that is based on one of a probability of odor detection, a probability of sensory irritancy detection, and a combination thereof. When the particulate concentration signal reaches the predicted particulate concentration threshold, the controller commands the air purification subsystem to alter a condition in the air containing the particulates.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
A rotor for a turbomachine and a method of manufacturing the same. The method includes providing a lug with a lug body and an interface material disposed on the lug body. The method also includes friction welding the lug to a hub member via the interface material to define a projected structure for an outer radial area of a disc assembly of the rotor. The projected structure is configured to support a first side of a rotor blade of the rotor in cooperation with a second projected structure of the disc assembly supporting a second side of the rotor blade. The lug body and the hub member are made from different materials.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.