Abstract:
A silencer for a vehicle air conditioning system is designed to reduce a noise and a vibration of a compressor transmitted into a vehicle room along coolant pipes. The silencer includes a silencer body tube and an external resonance tube. The silencer body tube is installed between the coolant pipes wherein a coolant gas flowing along the coolant pipes passes through the silencer body tube, the silencer body tube including one or more resonance holes formed on an outer circumferential surface of the silencer body tube. The external resonance tube is installed on the outer circumferential surface of the silencer body tube wherein a resonance chamber for absorbing a vibration and a noise of a coolant gas flowing through the silencer body tube is defined between the outer circumferential surface of the silencer body tube and the external resonance tube.
Abstract:
A smell generation time predicting device is used for a vehicle air conditioner which includes an evaporator installed in an internal path of an air conditioner case and configured to, when the air conditioner is turned on, cool an air blown into a vehicle room. The device includes a first temperature detector, a second temperature detector, and a control unit. The first temperature detector and the second temperature detector are installed at a downstream side of the evaporator in a mutually spaced-apart relationship. The control unit is configured to, when the air conditioner is turned off, predict a smell generation time in the evaporator depending on a temperature difference between the air temperatures detected by the first temperature detector and second temperature detector.
Abstract:
Disclosed therein is an air conditioner for a vehicle, which includes: a bypass passageway formed at a lower portion of an air-conditioning case which bypasses cold air and warm air passageways; a regeneration passageway formed at the lower portion of the air-conditioning case for supplying the air passing through the bypass passageway to a regeneration part of the desiccant rotor; and a heater having one side area arranged on the bypass passageway and the other side area arranged on the warm air passageway. The air conditioner heats the dehumidified air passing through the desiccant part of the desiccant rotor and the bypass passageway by the heater and supplies the heated air to the regeneration part of the desiccant rotor so as to regenerate the desiccant rotor, thereby reducing the number of components and the entire size and enhancing heating performance and increasing an air volume by moving the air, which is heated while passing the bypass passageway through a door mounted in the communication chamber, toward the warm air passageway in a heating mode.
Abstract:
A silencer for a vehicle air conditioning system is designed to reduce a noise and a vibration of a compressor transmitted into a vehicle room along coolant pipes. The silencer includes a silencer body tube and an external resonance tube. The silencer body tube is installed between the coolant pipes wherein a coolant gas flowing along the coolant pipes passes through the silencer body tube, the silencer body tube including one or more resonance holes formed on an outer circumferential surface of the silencer body tube. The external resonance tube is installed on the outer circumferential surface of the silencer body tube wherein a resonance chamber for absorbing a vibration and a noise of a coolant gas flowing through the silencer body tube is defined between the outer circumferential surface of the silencer body tube and the external resonance tube.
Abstract:
Disclosed therein is an air conditioner for a vehicle, which includes: a bypass passageway formed at a lower portion of an air-conditioning case which bypasses cold air and warm air passageways; a regeneration passageway formed at the lower portion of the air-conditioning case for supplying the air passing through the bypass passageway to a regeneration part of the desiccant rotor; and a heater having one side area arranged on the bypass passageway and the other side area arranged on the warm air passageway. The air conditioner heats the dehumidified air passing through the desiccant part of the desiccant rotor and the bypass passageway by the heater and supplies the heated air to the regeneration part of the desiccant rotor so as to regenerate the desiccant rotor, thereby reducing the number of components and the entire size and enhancing heating performance and increasing an air volume by moving the air, which is heated while passing the bypass passageway through a door mounted in the communication chamber, toward the warm air passageway in a heating mode.
Abstract:
A smell generation time predicting device is used for a vehicle air conditioner which includes an evaporator installed in an internal path of an air conditioner case and configured to, when the air conditioner is turned on, cool air blown into a vehicle room. The device includes a first temperature detector, a second temperature detector, and a control unit. The first temperature detector and the second temperature detector are installed at a downstream side of the evaporator in a mutually spaced-apart relationship. The control unit is configured to, when the air conditioner is turned off, predict a smell generation time in the evaporator depending on a temperature difference between the air temperatures detected by the first temperature detector and the second temperature detector.
Abstract:
A silencer for a vehicle air conditioning system is designed to reduce a noise and a vibration of a compressor transmitted into a vehicle room along coolant pipes. The silencer includes a silencer body tube and an external resonance tube. The silencer body tube is installed between the coolant pipes wherein a coolant gas flowing along the coolant pipes passes through the silencer body tube, the silencer body tube including one or more resonance holes formed on an outer circumferential surface of the silencer body tube. The external resonance tube is installed on the outer circumferential surface of the silencer body tube wherein a resonance chamber for absorbing a vibration and a noise of a coolant gas flowing through the silencer body tube is defined between the outer circumferential surface of the silencer body tube and the external resonance tube.
Abstract:
A silencer for a vehicle air conditioning system is designed to reduce a noise and a vibration of a compressor transmitted into a vehicle room along coolant pipes. The silencer includes a silencer body tube and an external resonance tube. The silencer body tube is installed between the coolant pipes wherein a coolant gas flowing along the coolant pipes passes through the silencer body tube, the silencer body tube including one or more resonance holes formed on an outer circumferential surface of the silencer body tube. The external resonance tube is installed on the outer circumferential surface of the silencer body tube wherein a resonance chamber for absorbing a vibration and a noise of a coolant gas flowing through the silencer body tube is defined between the outer circumferential surface of the silencer body tube and the external resonance tube.