Abstract:
Disclosed herein is a method for controlling an electromotive compressor in a heat pump system for a vehicle. In accordance with an embodiment of the present invention, an unexpected cutoff of a compressor attributable to overload and the generation of noise and vibration attributable to frequent restarts can be prevented by controlling the number of rotations of the compressor within a specific range based on the discharge pressure of the compressor.
Abstract:
A heat pump system for a vehicle, which makes refrigerant bypass an external heat exchanger and turns off a fan mounted on the external heat exchanger when temperature of the outdoor air is lower than setting temperature and the vehicle enters into an idle state in a heat pump mode, thereby continuously operating the heat pump mode even in the below zero temperature so as to keep heating performance, reducing consumption of electrical power without needing to operate an electric heater, and preventing excessive noise of a fan when the vehicle enters into an idle state in the below zero temperature.
Abstract:
A heat pump system for a vehicle includes a dehumidification line for supplying some refrigerant circulating in a refrigerant circulation line to an evaporator before the refrigerant is introduced into an exterior heat exchanger after passing a first expansion means so as to dehumidify the interior of the vehicle in a heat pump mode, thereby allowing the refrigerant to smoothly flow to the evaporator at a low pressure through the dehumidification line before the refrigerant is introduced into the exterior heat exchanger which has a higher pressure than the evaporator when the interior of the vehicle is dehumidified, and smoothly dehumidifying the inside of the vehicle.
Abstract:
A heat pump system for a vehicle includes a dehumidification line for supplying some refrigerant circulating in a refrigerant circulation line to an evaporator before the refrigerant is introduced into an exterior heat exchanger after passing a first expansion means so as to dehumidify the interior of the vehicle in a heat pump mode, thereby allowing the refrigerant to smoothly flow to the evaporator at a low pressure through the dehumidification line before the refrigerant is introduced into the exterior heat exchanger which has a higher pressure than the evaporator when the interior of the vehicle is dehumidified, and smoothly dehumidifying the inside of the vehicle.
Abstract:
A positive temperature coefficient heater includes PTC elements embedded in adjacent heat rods, the PTC elements of the adjacent heat rods include center lines mismatched with each other and configured to minimize regions in which the PTC elements are overlapped with each other in the heat rods in which a plurality of PTC elements spaced apart from each other so as to form columns and rows and arranged in a single layer are embedded.
Abstract:
A positive temperature coefficient heater includes PTC elements embedded in adjacent heat rods, the PTC elements of the adjacent heat rods include center lines mismatched with each other and configured to minimize regions in which the PTC elements are overlapped with each other in the heat rods in which a plurality of PTC elements spaced apart from each other so as to form columns and rows and arranged in a single layer are embedded.
Abstract:
A heat pump system for a vehicle delays the change of the direction of a directional valve for a given period of time and then conducts the change of the direction of the directional valve, upon receiving the mode change signal between an air conditioner mode and a heat pump mode, thus preventing the generation of the noise and vibration caused by the differential pressure of a refrigerant.
Abstract:
Disclosed therein is an air conditioner for a vehicle, which includes: a bypass passageway formed at a lower portion of an air-conditioning case which bypasses cold air and warm air passageways; a regeneration passageway formed at the lower portion of the air-conditioning case for supplying the air passing through the bypass passageway to a regeneration part of the desiccant rotor; and a heater having one side area arranged on the bypass passageway and the other side area arranged on the warm air passageway. The air conditioner heats the dehumidified air passing through the desiccant part of the desiccant rotor and the bypass passageway by the heater and supplies the heated air to the regeneration part of the desiccant rotor so as to regenerate the desiccant rotor, thereby reducing the number of components and the entire size and enhancing heating performance and increasing an air volume by moving the air, which is heated while passing the bypass passageway through a door mounted in the communication chamber, toward the warm air passageway in a heating mode.
Abstract:
Disclosed herein is a method for controlling an electromotive compressor in a heat pump system for a vehicle. In accordance with an embodiment of the present invention, an unexpected cutoff of a compressor attributable to overload and the generation of noise and vibration attributable to frequent restarts can be prevented by controlling the number of rotations of the compressor within a specific range based on the discharge pressure of the compressor.
Abstract:
Disclosed therein is an air conditioner for a vehicle, which includes: a bypass passageway formed at a lower portion of an air-conditioning case which bypasses cold air and warm air passageways; a regeneration passageway formed at the lower portion of the air-conditioning case for supplying the air passing through the bypass passageway to a regeneration part of the desiccant rotor; and a heater having one side area arranged on the bypass passageway and the other side area arranged on the warm air passageway. The air conditioner heats the dehumidified air passing through the desiccant part of the desiccant rotor and the bypass passageway by the heater and supplies the heated air to the regeneration part of the desiccant rotor so as to regenerate the desiccant rotor, thereby reducing the number of components and the entire size and enhancing heating performance and increasing an air volume by moving the air, which is heated while passing the bypass passageway through a door mounted in the communication chamber, toward the warm air passageway in a heating mode.