摘要:
A face is scanned to obtain a three-dimensional geometry of the face, images are also acquired of the face, and subsurface scattering of the face is measured. A translucency map is determined from the subsurface reflectance. A total surface reflectance and a normal map are estimated from the three-dimensional geometry and the images, and diffuse reflectance is estimated using the total reflectance. An albedo map is determined from the diffuse reflectance. The diffuse reflectance is subtracted from the total reflectance to obtain a surface reflectance. A set of bi-directional reflectance functions is fitted to the surface reflectance. Then, the set of bi-directional reflectance distribution functions, the albedo map, and the translucency map are combined to form a skin reflectance model of the face.
摘要:
A method renders a model of an object by first acquiring, in an acquisition space, a reflectance field of the object. The reflectance field includes a set of reflectance images of the object and a point model of the object. The model is deformed in an object space to generate a deformed model. For each point of the deformed model in the object space, the set of the reflectance images is queried in the acquisition space to obtain reflectance coefficients for each point. Each point of the deformed model is then shaded according to the corresponding reflectance coefficients to generate an image of the object reflecting the deforming.
摘要:
A face is scanned to obtain a three-dimensional geometry of the face, images are also acquired of the face, and subsurface scattering of the face is measured. A translucency map is determined from the subsurface reflectance. A total surface reflectance and a normal map are estimated from the three-dimensional geometry and the images, and diffuse reflectance is estimated using the total reflectance. An albedo map is determined from the diffuse reflectance. The diffuse reflectance is subtracted from the total reflectance to obtain a surface reflectance. A set of bi-directional reflectance functions is fitted to the surface reflectance. Then, the set of bi-directional reflectance distribution functions, the albedo map, and the translucency map are combined to form a skin reflectance model of the face.
摘要:
A method renders a model of an object by first acquiring, in an acquisition space, a reflectance field of the object. The reflectance field includes a set of reflectance images of the object and a point model of the object. The model is deformed in an object space to generate a deformed model. For each point of the deformed model in the object space, the set of the reflectance images is queried in the acquisition space to obtain reflectance coefficients for each point. Each point of the deformed model is then shaded according to the corresponding reflectance coefficients to generate an image of the object reflecting the deforming.
摘要:
In an object generation system, consumable base materials are characterized in a characterization process wherein an object generation system can use a plurality of so-characterized base materials. User input representing a desired object and set of characteristics for that desired object are processed, using a computer or computing device, to derive a mapping of locations for placement of portions of the plurality of base materials such that when the mapping is provided to an object generator, the generated object approximates the representing a desired object and set of characteristics. The characterization of a base material might include elasticity of the base material, the user input might be a desired shape and elasticity, the object generator might be a 3D multi-material printer and the generated object might at least approximate the desired shape and elasticity as a result of being constructed from the plurality of base materials used by the printer.
摘要:
A system encodes videos acquired of a moving object in a scene by multiple fixed cameras. Camera calibration data of each camera are first determined. The camera calibration data of each camera are associated with the corresponding video. A segmentation mask for each frame of each video is determined. The segmentation mask identifies only foreground pixels in the frame associated with the object. A shape encoder then encodes the segmentation masks, a position encoder encodes a position of each pixel, and a color encoder encodes a color of each pixel. The encoded data can be combined into a single bitstream and transferred to a decoder. At the decoder, the bitstream is decoded to an output video having an arbitrary user selected viewpoint. A dynamic 3D point model defines a geometry of the moving object. Splat sizes and surface normals used during the rendering can be explicitly determined by the encoder, or explicitly by the decoder.
摘要:
A system encodes videos acquired of a moving object in a scene by multiple fixed cameras. Camera calibration data of each camera are first determined. The camera calibration data of each camera are associated with the corresponding video. A segmentation mask for each frame of each video is determined. The segmentation mask identifies only foreground pixels in the frame associated with the object. A shape encoder then encodes the segmentation masks, a position encoder encodes a position of each pixel, and a color encoder encodes a color of each pixel. The encoded data can be combined into a single bitstream and transferred to a decoder. At the decoder, the bitstream is decoded to an output video having an arbitrary user selected viewpoint. A dynamic 3D point model defines a geometry of the moving object. Splat sizes and surface normals used during the rendering can be explicitly determined by the encoder, or explicitly by the decoder.
摘要:
In an object generation system, consumable base materials are characterized in a characterization process wherein an object generation system can use a plurality of so-characterized base materials. User input representing a desired object and set of characteristics for that desired object are processed, using a computer or computing device, to derive a mapping of locations for placement of portions of the plurality of base materials such that when the mapping is provided to an object generator, the generated object approximates the representing a desired object and set of characteristics. The characterization of a base material might include elasticity of the base material, the user input might be a desired shape and elasticity, the object generator might be a 3D multi-material printer and the generated object might at least approximate the desired shape and elasticity as a result of being constructed from the plurality of base materials used by the printer.
摘要:
Provided is point-based efficient three-dimensional (3D) information representation from a color image that is obtained from a general Charge-Coupled Device (CCD)/Complementary Metal Oxide Semiconductor (CMOS) camera, and a depth image that is obtained from a depth camera. A 3D image processing method includes storing a depth image associated with an object as first data of a 3D data format, and storing a color image associated with the object as color image data of a 2D image format, independent of the first data.
摘要:
Estimating a pose of an articulated 3D object model (4) by a computer is done by •obtaining a sequence of source images (10) and therefrom corresponding source image segments (13) with objects (14) separated from the image background; •matching such a sequence (51) with sequences (52) of reference silhouettes (13′), determining one or more selected sequences of reference silhouettes (13′) forming a best match; •for each of these selected sequences of reference silhouettes (13′), retrieving a reference pose that is associated with one of the reference silhouettes (13′); and •computing an estimate of the pose of the articulated object model (4) from the retrieved reference pose or poses. The result of these steps is an initial pose estimate, which then can be used in further steps, for example, for maintaining local consistency between pose estimates from consecutive frames, and global consistency over a longer sequence of frames.