摘要:
An object of the present invention is to acquire optimum recording characteristics of an optical recoding medium having multiple data layers, with respect to each of the multiple data layers without increasing learning time required for learning a relation between aberration amount and optimum recording compensation with respect to each of the multiple data layers. The present invention includes a wavefront converter which is driven in such a manner as to reduce the aberration amount detected by an aberration detector. An output controller holds learned data as to the relation between the driving amount of the wavefront converter and the output of a light source, and controls the output of the light source based on the driving amount of the wavefront converter and the learned data.
摘要:
An optical head device includes: an optical element collecting light reflected from a reproduction information layer (a target information layer in an optical information recording medium) and light reflected from information layers adjacent to the reproduction information layer at different positions; a light receiving element obtaining a detection signal from the reflected light collected by this optical element; and arithmetic circuitry obtaining a reproduction signal from this detection signal. The light receiving element includes: a first light receiving portion detecting a first detection signal from light containing the light reflected from the reproduction information layer; a second light receiving portion detecting a second detection signal from light reflected from a first adjacent information layer located more distant from the condensing lens than the reproduction information layer; and a third light receiving portion detecting a third detection signal from light reflected from a second adjacent information layer located closer to the condensing lens than the reproduction information layer. The arithmetic circuitry uses constants K and L determined depending on spaces between the reproduction information layer and the adjacent information layers, so as to subtract the K-times second detection signal and the L-times third detection signal from the first detection signal.
摘要:
An information recording medium of the present invention includes a recording portion capable of storing information three-dimensionally. The recording portion (3) includes at least one recording layer (1a to 1f), and the recording layer (1a to 1f) contains titanium oxide. It is preferable that titanium oxide is at least one kind of an anatase type and a brookite type. The recording layer (1a to 1f) may be substantially made of titanium oxide, and may contain titanium oxide and a low refractive-index material having a refractive index smaller than that of titanium oxide.
摘要:
An information recording medium has a recording portion where three-dimensional information can be recorded. The recording portion includes at least one particle-containing layer (recording layer or a recording auxiliary layer) containing particles absorbing at least a part of light having a predetermined wavelength and substantially transparent to a recording light and a reproducing light having a wavelength longer than the predetermined wavelength and a particle holding material substantially transparent to the recording and reproducing lights. The mean particle size of the particles is preferably shorter than the wavelengths of the recording and reproducing lights.
摘要:
An information recording medium has a recording portion where three-dimensional information can be recorded. The recording portion includes at least one particle-containing layer (recording layer or a recording auxiliary layer) containing particles absorbing at least a part of light having a predetermined wavelength and substantially transparent to a recording light and a reproducing light having a wavelength longer than the predetermined wavelength and a particle holding material substantially transparent to the recording and reproducing lights. The mean particle size of the particles is preferably shorter than the wavelengths of the recording and reproducing lights.
摘要:
An information recording medium is provided that includes a recording portion (3), which is irradiated with a recording light or a reproducing light so that information is recorded or reproduced thereto or therefrom. The recording portion (3) contains a first phosphor and a photon-mode photosensitive material. The first phosphor has a property of absorbing a first light having a wavelength of λ1/n and then emitting a second light having a wavelength longer than that of the first light, where λ1 is a wavelength of the recording light. The photosensitive material absorbs the second light and then exhibits a change in an optical constant thereof. A n-photon absorption sensitivity of the first phosphor with respect to the recording light is greater than a n-photon absorption sensitivity of the photosensitive material with respect to the recording light, where n is an integer not less than 2.
摘要:
An optical information reproducing method of the present invention is used for an optical recording medium. The optical recording medium includes a recording layer containing information and a mask layer that is located close to the recording layer and includes a nonlinear optical material whose optical properties are changed in accordance with incident light intensity. The method includes irradiating the optical recording medium with convergent light that is polarized in a first direction and dividing reflected light from the optical recording medium into a first polarized component that is polarized in the first direction and a second polarized component that is polarized in a second direction perpendicular to the first direction. The second polarized component is used to detect a reproduction signal.
摘要:
The present invention relates to an optical head device, an optical recording device, and an optical recording method, and an object of the present invention is to enable to acquire optimum recording characteristics of an optical recoding medium having multiple data layers, with respect to each of the multiple data layers without increasing learning time required for learning a relation between aberration amount and optimum recording compensation with respect to each of the multiple data layers. To accomplish this object, the optical head device, the optical recording device, and the optical recording method of the present invention are constructed such that the wavefront converting means 4 is driven in such a manner as to reduce the aberration amount detected by the aberration detecting means 12. The output controlling means 13 holds learned data as to the relation between the driving amount of the wavefront converting means 4 and the output of the light source 1, and controls the output of the light source 1 based on the driving amount of the wavefront converting means 4 and the learned data.
摘要:
An optical recording and/or reproduction apparatus includes: a light source for emitting a first light beam; an optical system for outputting first and second diffracted light beams and a second light beam; and a controlling section for controlling the optical system, wherein the first and second diffracted light beams interfere with each other to generate interference fringes which extend in a direction substantially perpendicular to a recording layer of an recording medium, the optical recording and/or reproduction apparatus further includes a detection section for detecting the interference fringes reflected by the guiding portion so as to output a detection signal, and the control section controls the optical system based on the detection signal such that the optical spots follow at least either of concave portions and convex portions of the guiding portion.
摘要:
An optical information recording carrier comprising a substrate and at least one recording film arranged on the substrate is disclosed. Information is recorded on the recording film through irradiation with a recording light having a predetermined wavelength (λ). The recording film is composed of a heat generating layer and at least one dielectric layer arranged in contact with the heat generating layer. The heat generating layer and the dielectric layer are substantially transparent to the recording light with wavelength (λ), and are respectively formed to have a predetermined thickness and a predetermined refractive index so that the field intensity of the recording light becomes maximum at the interface between the heat generating layer and the dielectric layer.