Abstract:
The invention relates to a base station, comprising: a transceiver for multi-carrier radio transmission within a radio frequency band, the transceiver being adapted to receive service quality requests of a plurality of users requesting service from the base station; and a radio resource controller being adapted to allocate subcarriers of the multi-carrier radio transmission to the users and configure the subcarriers in the radio frequency band according to the service quality requests of the users.
Abstract:
A user equipment, UE (4), registered with an anchor cell base station (3-0) of an anchor cell (2-0) of a cellular wireless network (1), the UE (4) comprising a determination unit being adapted to predict an inter cell interference, ICI, at the UE (4), caused by base stations (3-1 to 3-6) of neighboring cells (2-1 to 2-6), depending on precoding matrix indicators, PMIs, of precoding matrices, PMs, the PMIs being exchanged between the anchor cell base station (3-0) of the anchor cell (2-0) and the base stations (3-1 to 3-6) of the neighboring cells (2-1 to 2-6).
Abstract:
A base band unit, BBU, in a wireless cellular heterogeneous network, the BBU being provided in a transmission node cluster, TNC, of transmission nodes, TNs, of neighboring cells of the wireless cellular heterogeneous network, wherein the BBU comprises generic hierarchical precoding codebooks, CBs, each CB comprising cluster precoding matrices, CPMs, and each CPM is provided for a possible combination of active TNs within the TNC.
Abstract:
The invention relates to a base station, comprising: a transceiver for multi-carrier radio transmission within a radio frequency band, the transceiver being adapted to receive service quality requests of a plurality of users requesting service from the base station; and a radio resource controller being adapted to allocate subcarriers of the multi-carrier radio transmission to the users and configure the subcarriers in the radio frequency band according to the service quality requests of the users.
Abstract:
An Femtocell/WLAN communication device, comprising a Femtocell module for cellular wireless communications, the Femtocell module having an input for receiving a first electrical input signal and an output for outputting a first electrical output signal, a WLAN module for WLAN communications, the WLAN module having an input for receiving a second electrical input signal and an output for outputting a second electrical output signal, an optical interface having a first conversion path connected to the output of the Femtocell module, a second conversion path connected to the output of the WLAN module, a third conversion path connected to the input of the Femtocell module, and a fourth conversion path connected to the input of the WLAN module, and a common port for receiving the first optical input signal and the second optical input signal, and for outputting the first optical output signal and the second optical output signal.
Abstract:
An Femtocell/WLAN communication device, comprising a Femtocell module for cellular wireless communications, the Femtocell module having an input for receiving a first electrical input signal and an output for outputting a first electrical output signal, a WLAN module for WLAN communications, the WLAN module having an input for receiving a second electrical input signal and an output for outputting a second electrical output signal, an optical interface having a first conversion path connected to the output of the Femtocell module, a second conversion path connected to the output of the WLAN module, a third conversion path connected to the input of the Femtocell module, and a fourth conversion path connected to the input of the WLAN module, and a common port for receiving the first optical input signal and the second optical input signal, and for outputting the first optical output signal and the second optical output signal.