Abstract:
The present disclosure relates to a DC-to-DC converter. The DC-to-DC converter includes a first port coupled to a first full bridge and a transformer coupled to the first full bridge and to a second full bridge. The DC-to-DC converter further includes a second port coupled to the second full bridge; a first inductor coupled between the second full bridge and the second port; and a first freewheeling circuit including a first diode being coupled in series with a switch. The first freewheeling circuit is further coupled in parallel with the first inductor between the second full bridge and the second port. Thereby, the DC-to-DC converter has a wide input and wide output (WIWO) range and a voltage gain that is linear.
Abstract:
The technology of this application relates to a drive circuit with an energy recovery function, including a control circuit, an energy recovery drive circuit, a switch circuit, and a direct current power supply. The control circuit is configured to control an energy storage capacitor in the energy recovery drive circuit to charge a junction capacitor of the switch circuit at a first moment, and enable the direct current power supply to charge the junction capacitor of the switch circuit through the energy recovery drive circuit at a second moment, so that the switch circuit is switched on. The control circuit is further configured to control the junction capacitor of the switch circuit to charge the energy storage capacitor in the energy recovery drive circuit at a third moment, and enable the junction capacitor of the switch circuit to discharge to a ground through the energy recovery drive circuit at a fourth moment, so that the switch circuit is switched off.
Abstract:
According to a non-isolated DCDC resonant conversion control circuit provided in embodiments of this application, an inductor and a capacitor that are resonant are connected in series, so that a current flowing through the inductor is a sine waveform. A waveform coefficient of the sine wave is small, and a conduction loss of the sine wave is low. Therefore, the circuit provided in embodiments of this application can significantly reduce a circuit loss. According to the non-isolated DCDC resonant conversion control method provided in embodiments of this application, not only a phase shift angle can be adjusted to enable a switching transistor to implement zero voltage switching (ZVS) on, but switching frequency can also be adjusted. Therefore, ranges in which a voltage and power of an output interface can be adjusted are large, so that non-isolated wide-range DCDC resonant conversion is implemented.
Abstract:
A bridgeless power factor correction (PFC) circuit, which includes an alternating current power supply module, a power module, and a control module; the power module includes one or more interleaved PFC circuits, each interleaved PFC circuit includes one inductor, one pair of first switching components, and at least one capacitor, a first end of the inductor is connected to the alternating current power supply module, and a second end of the inductor is connected to one end of each capacitor through one of the first switching components and is also connected to the other end of each capacitor through the other one of the first switching components; and the control module samples a current of each first switching component in the power module, and turns off a first switching component through which a negative current flows.
Abstract:
A bridgeless power factor correction (PFC) circuit, which includes an alternating current power supply module, a power module, and a control module; the power module includes one or more interleaved PFC circuits, each interleaved PFC circuit includes one inductor, one pair of first switching components, and at least one capacitor, a first end of the inductor is connected to the alternating current power supply module, and a second end of the inductor is connected to one end of each capacitor through one of the first switching components and is also connected to the other end of each capacitor through the other one of the first switching components; and the control module samples a current of each first switching component in the power module, and turns off a first switching component through which a negative current flows.