Abstract:
A modified maleimide oligomer is disclosed. The modified maleimide oligomer is made by performing a reaction of a compound having a barbituric acid structure, a free radical capture, and a compound having a maleimide structure. A composition for a battery is also disclosed. The composition includes the modified maleimide oligomer.
Abstract:
A positive electrode material, a positive electrode, and a battery employing the same are provided. The positive electrode material includes an active particle and a modified layer covering the surface of the active particle. The modified layer is a reaction product of a composition. The composition includes an ionic conductive ceramic compound, an organic conductive compound, and a coupling agent. In the disclosure, the ionic conductive ceramic compound is 50-84 parts by weight, the organic conductive compound is 16-50 parts by weight, and the total weight of the ionic conductive ceramic compound and the organic conductive compound is 100 parts by weight. In the disclosure, the weight percentage of the coupling agent is from 0.05 wt % to 10 wt %, based on the total weight of the ionic conductive ceramic compound and the organic conductive compound.
Abstract:
An additive formulation for a lithium ion battery is provided, which includes an ionic conductor and a compound having a maleimide structure. An electrode slurry composition is also provided, which includes an active material, a conductive additive, an adhesive, and an additive formulation containing an ionic conductor and a compound having a maleimide structure modified by a compound having a barbituric acid structure.
Abstract:
A lithium ion battery and an electrode structure thereof are provided. The electrode structure at least includes a current collecting substrate, an electrode active material layer on the current collecting substrate, and a complex thermo-sensitive coating layer sandwiched in between the current collecting substrate and the electrode active material layer. The complex thermo-sensitive coating layer at least contains two or more of PTC (positive temperature coefficient) materials so as to have adjustable stepped resistivity according to temperature rise.
Abstract:
A method of forming slurry for a positive electrode plate is provided, which includes reacting maleimide compound and barbituric acid to form a hyper branched polymer. 0.1 to 1 part by weight of the hyper branched polymer is mixed with 0.01 to 1 part by weight of coupling agent and 0.1 to 6 parts by weight of carbon nanotube to form a mixture. 80 to 97.79 parts by weight of active material is added to the mixture, wherein the hyper branched polymer, the carbon nanotube, and the active material are bonded by the coupling agent.
Abstract:
An additive formulation for a lithium ion battery is provided, which includes an ionic conductor and a compound having a maleimide structure. An electrode slurry composition is also provided, which includes an active material, a conductive additive, an adhesive, and an additive formulation containing an ionic conductor and a compound having a maleimide structure modified by a compound having a barbituric acid structure.
Abstract:
A battery electrode paste composition containing a silane coupling agent-modified active substance is provided. The battery electrode paste composition includes a silane coupling agent-modified active substance, a conductive additive, an adhesive, and a maleimide additive. The composition containing the silane coupling agent-modified active substance may provide better battery safety and longer cycle life.