Abstract:
A resin composition is provided, which includes an oligomer formed by reacting bisphenol epoxy resin monomer, aliphatic diglycidyl ether, anhydride compound, and catalyst, wherein the molar ratio of epoxy groups of the bisphenol epoxy resin monomer and aliphatic diglycidyl ether to anhydride groups of the anhydride compound is between 3.5:1 and 8.8:1. The bisphenol epoxy resin monomer and aliphatic diglycidyl ether have a molar ratio of 0.3:1 to 1.3:1, and the viscosity of the resin composition is 20 Pa·s to 80 Pa·s at 25° C.
Abstract:
A resin containing oxetane and epoxy groups is provided, being formed by reacting (a) a product of reacting 1 part by mole of a mono-oxetane with a hydroxyl group and 1.1 to 2.5 parts by mole of anhydride, and (b) 2.1 to 4.2 parts by mole of a diepoxy compound. The mono-oxetane with a hydroxyl group has a structure: wherein R1 is H, C1-6 alkyl group, C1-6 fluoroalkyl group, alkenyl group, or phenyl group, and R2 is C1-6 alkylene group or vinyl ether group.
Abstract:
An oligomer is formed by reacting a diacid monomer with (a) epoxy resin or (b) glycidyl methacrylate, wherein the diacid monomer has a chemical structure of wherein X is —O—, and each R1 is independently CH3, CH2F, CHF2, or CF3. A composition containing the oligomer can be cured to serve as a sealant of an optoelectronic device, and the sealant can be lifted off by a laser beam irradiation.
Abstract:
A double-sided optically clear adhesive is provided. The double-sided optically clear adhesive includes a first adhesive layer and a second adhesive layer. The first adhesive layer includes a first resin and a first thermal-crosslinking agent. The first resin includes a hydroxyl group. The first thermal-crosslinking agent includes a first group. The second adhesive layer includes a second resin and a second thermal-crosslinking agent. The second resin includes a hydroxyl group. The second thermal-crosslinking agent includes a second group. The ratio of the equivalent number of the first group of the first thermal-crosslinking agent to the equivalent number of the hydroxyl group of the first resin is represented by r1. The ratio of the equivalent number of the second group of the second thermal-crosslinking agent to the equivalent number of the hydroxyl group of the second resin is represented by r2, wherein r1
Abstract:
A hydrophobic polyvinyl alcohol and a method for preparing hydrophobic polyvinyl alcohol are provided. The hydrophobic polyvinyl alcohol includes a first repeat unit represented by Formula (I), a second repeat unit represented by Formula (II), and a third repeat unit represented by Formula (III)
wherein R1 is —Si(R2)3,
R2 is independently C1-6 alkoxy group, C6-18 alkyl group, or C6-22 alkenyl group, and at least one R2 is C6-18 alkyl group or C6-22 alkenyl group; R3 and R4 are independently C6-18 alkyl group or C6-22 alkenyl group; j is 3 to 7; and k is 1 to 30.
Abstract:
A partially esterified epoxy resin and an epoxy resin composition applied with the same, and a method for preparing the composition are provided. The preparation method includes the following steps. A bifunctional epoxy resin and an anhydride are mixed and heated, wherein the number of equivalent moles of the bifunctional epoxy resin is greater than that of the anhydride, to form a partially esterified epoxy resin. A curing agent is mixed into the partially esterified epoxy resin to form a mixed solution. The mixed solution is cured to form the partially esterified epoxy resin composition.