Abstract:
A photosensitive composition and a photoresist are provided. The photoresist is formed by compounding a photosensitive composition. The photosensitive composition includes a binder agent, a first photomonomer, and a photo initiator. The first photomonomer has at least a lactic oligomer and at least two unsaturated acrylic functional groups, wherein the first photomonomer has an amount of about 25-95 parts by weight relative to 100 parts by weight of a solid content of the binder agent. The photoinitiator has an amount of about 0.5-15 parts by weight relative to 100 parts by weight of the solid content of the binder agent.
Abstract:
A wood adhesive is provided. The wood adhesive includes a first agent and a second agent. The first agent includes a sodium carboxymethyl cellulose and a styrene-butadiene rubber polymer. The sodium carboxymethyl cellulose has a molecular weight between 15,000 and 500,000 and a degree of substitution of from 0.4 to 2.00 of the sodium salt. The second agent includes a polymeric quaternary amine.
Abstract:
A wood adhesive is provided. The wood adhesive includes a first agent and a second agent. The first agent includes a sodium carboxymethyl cellulose and a styrene-butadiene rubber polymer. The sodium carboxymethyl cellulose has a molecular weight between 15,000 and 500,000 and a degree of substitution of from 0.4 to 2.00 of the sodium salt. The second agent includes a polymeric quaternary amine.
Abstract:
A hardcoat composition and a polarizer and a display device applying the same are provided. The hardcoat composition comprises an acrylic copolymer, a multi-functional unsaturated photomonomer or oligomer, a photoinitiator, and a thermal curing agent. The acrylic copolymer with hydroxyl group has a weight-average molecular weight equal to or larger than 15,000 and has a glass transition temperature higher than 25° C.
Abstract:
A double-sided optically clear adhesive is provided. The double-sided optically clear adhesive includes a first adhesive layer and a second adhesive layer. The first adhesive layer includes a first resin and a first thermal-crosslinking agent. The first resin includes a hydroxyl group. The first thermal-crosslinking agent includes a first group. The second adhesive layer includes a second resin and a second thermal-crosslinking agent. The second resin includes a hydroxyl group. The second thermal-crosslinking agent includes a second group. The ratio of the equivalent number of the first group of the first thermal-crosslinking agent to the equivalent number of the hydroxyl group of the first resin is represented by r1. The ratio of the equivalent number of the second group of the second thermal-crosslinking agent to the equivalent number of the hydroxyl group of the second resin is represented by r2, wherein r1
Abstract:
A conductive composition and a method for fabricating a micro light-emitting diode (LED) display are provided. The conductive composition includes 5-90 parts by weight of monomer, 10-95 parts by weight of epoxy resin, and 50-150 parts by weight of conductive powder. The total weight of the monomer and the epoxy resin is 100 parts by weight. The monomer has n reactive functional groups, wherein n is 1, 2, 3 or 4. The monomer has a molecular weight equal to or less than 350. The epoxy resin has an epoxy equivalent weight (EEW) from 160 g/Eq to 3500 g/Eq. Furthermore, there is a specific relationship among the weight of monomer, the number of reactive functional groups, the molecular weight of monomer, the weight of epoxy resin, and the epoxy equivalent weight of epoxy resin.
Abstract:
An adhesive structure is provided, which includes a plastic substrate, and an adhesive layer on the plastic substrate. The adhesive layer includes a releasable adhesive. The adhesive layer has a Young's modulus of 5 MPa to 14 MPa and an adhesive force to glass of 200 gf/25 mm to 2000 gf/25 mm. The adhesive structure can be used to transfer a device.
Abstract:
An adhesive structure is provided, which includes a plastic substrate, and an adhesive layer on the plastic substrate. The adhesive layer includes a releasable adhesive. The adhesive layer has a Young's modulus of 5 MPa to 14 MPa and an adhesive force to glass of 200 gf/25 mm to 2000 gf/25 mm. The adhesive structure can be used to transfer a device.
Abstract:
A method of forming a biomass photosensitive material is provided, which includes (1) polymerizing (a) itaconic anhydride and (b) acrylate to form a copolymer, and (2) mixing the copolymer and (c) monomer with a single hydroxy group and a carbon-carbon double bond for a ring-opening addition reaction, wherein the (a) itaconic anhydride and the single hydroxy group of the (c) monomer with the single hydroxy group and the carbon-carbon double bond are reacted in the ring-opening addition reaction.