Abstract:
The filtration material includes a supporting layer, a first selective layer disposed on the supporting layer, and a second selective layer disposed on the first selective layer. The first selective layer includes a polyimide and an ionic polymer intertwined with the polyimide. In particular, the polyimide includes at least one repeat unit having a structure represented by Formula (I) wherein A1 is A2 is R1 and R2 are independently —H, —CF3, —OH, —Br, —Cl, —F, C1-6 alkyl group, or C1-6 alkoxy group; and X and Y are independently single bond, —O—, —CH2—, —C(CH3)2—, or —NH—.
Abstract:
The disclosure provides a filtration material and a method for fabricating the same. The filtration material includes a supporting layer, and a composite layer, wherein the composite layer includes an ionic polymer and an interfacial polymer. Particularly, the ionic polymer and the interfacial polymer are intertwined with each other, resulting from ionic bonds formed between the ionic polymer and the interfacial polymer.
Abstract:
A separator is provided, which includes a porous polyolefin layer and a nano fiber web thereon, wherein the nano fiber web includes a plurality of nano fibers interwoven with each other. The nano fiber includes polyimide polymerized of diamine and dianhydride, wherein at least one of the diamine and the dianhydride is aliphatic or cycloaliphatic.
Abstract:
The present embodiment relates to a Plasticizer, which is fabricated by mixing monomers of biodegradable polymer with bio-molecules subsequently to deal the mixture with thermal treatment. The Biodegradable material comprising the Plasticizer has high melt index which is contributive for the processing of thermal processing, and the microwave-tolerance and water-resistance of the material makes the material suitable for food packaging.