Abstract:
A pixel structure is provided. The pixel structure includes a substrate and an insulating layer on the substrate. The insulating layer includes a plane region. An electrode pattern is disposed on the insulating layer and located on the plane region. The electrode pattern includes a bottom layer and a plurality of protrusions connected to the bottom layer. The protrusions protrude from the top surface of the bottom layer towards a direction away from the substrate. The bottom layer covers the plane region. A plurality of slits are formed between the protrusions so as to expose portions of the bottom layer. A liquid-crystal display having the pixel structure is also provided.
Abstract:
A display panel includes a first substrate, a second substrate and an electrode layer including at least a first part and a second part. The first part includes a first connecting electrode and a plurality of first branch electrodes disposed along a direction and spaced from each other by a first distance (T). When a light passes through the first branch electrodes, a brightness distribution is generated. The centers of two adjacent ones of the bright textures are separated by a second distance (P). The first connecting electrode is connected with the first branch electrodes. The first connecting electrode and the second connecting electrode of the second part are corresponding to each other and separated by a spacing (S). S, T and P satisfy the following equation: 1 2 a · ( b + P · m 2 + 1 4 · T 2 P ) - 1.5 ≤ S ≤ 1 2 a · ( b + P · m 2 + 1 4 · T 2 P ) + 1.5 , a= 1/12, b=¼, m= 1/10, and S, T and Pin unit of micrometer.
Abstract:
A display panel including a first polarizer, a second polarizer, a first substrate, a second substrate, a liquid crystal layer, and a pixel array is provided. The pixel array disposed on the first substrate includes a pixel area wherein a pixel electrode is disposed. The pixel electrode includes a first main electrode, a second main electrode, which substantially perpendicularly intersecting for defining a first domain, a second domain, a third domain, and a fourth domain of the pixel area, and a plurality of branch electrodes separately connected to the first or the second main electrode. When a maximum voltage is applied to the display panel, the liquid crystal layer has an average Azimuthal Angle represented as y1, satisfying B1
Abstract:
A display panel comprises a first substrate, a second substrate and a pixel array. The pixel array is disposed between the first substrate and the second substrate and comprises a pixel electrode and a data line. The data line is disposed adjacent to the pixel electrode and disposed above a side of the first substrate facing the second substrate. The pixel electrode comprises a first trunk electrode and a plurality of branch electrodes. An extension of the first trunk electrode along a first direction crosses the data line and the first trunk electrode connects to the branch electrodes. The branch electrodes extend along a second direction. An angle y is formed by the first direction and the second direction, x is the value of the ppi of the display panel, and x and y satisfy the following equations: A1=−1.28×10−5(x)3+0.0047722(x)2−0.383068(x)+59.494865, B1=−2.38×10−5(x)3+0.0093751(x)2−1.098394(x)+81.919357, B1
Abstract:
A display device including a first substrate, a color filter, a first electrode layer, a first alignment layer, a second substrate, and a display layer is provided. An interface is between the display region and the border region of the first substrate. The color filter is disposed corresponding to the display region and includes a plurality of first pixel regions and second pixel regions arranged staggeredly. The first alignment layer corresponding to a first one of the first pixel regions counting from the interface towards the display region has a first thickness T1, the first alignment layer corresponding to a fourth one of the first pixel regions counting from the interface towards the display region has a second thickness T2, and the first thickness T1 and the second thickness T2 in units of micrometers (μm) are conformed to the following condition: 0.8≤T1/T2≤1.2.
Abstract:
A liquid crystal display device includes a first substrate, a second substrate disposed opposite to the first substrate, a gate line disposed on the second substrate, an electrode layer disposed on the second substrate, and a light shielding portion disposed at a side of the first substrate facing the second substrate. The electrode layer includes a first electrode portion and a second electrode portion. The gate line is disposed between the first electrode portion and the second electrode portion. A projection area of the light shielding portion projected on the second substrate is overlapped with the gate line, and the projection area has a first side and a second side. The first electrode portion has a third side and a fourth side. The third side is disposed away from the gate line, and the first side is disposed between the third side and the fourth side.
Abstract:
A liquid crystal display device includes: a first substrate; a second substrate spaced apart from the first substrate; and a plurality of liquid crystal molecules disposed between the first and second substrates. The first substrate includes a transparent substrate, an insulator layer formed on a surface of the transparent substrate and formed with a plurality of grooves, and a pixel electrode formed on a surface of the insulator layer and formed with a plurality of electrode slits.
Abstract:
A liquid crystal display panel comprise a first substrate, a second substrate and a electrode structure. The electrode structure is disposed on the first substrate and defining a pixel. The electrode structure further comprises a first sub-electrode having a first stem electrode with a first end edge and a first branch electrode nearest the first end edge, and a second sub-electrode having a second stem electrode with a second end edge and a second branch electrode nearest the second end edge. The first sub-electrode and the second sub-electrode are adjacent to each other, and the first end edge and the second end edge are adjacent to the same side of the pixel. A first distance between the first end edge and the first branch electrode is different from a second distance between the second end edge and the second branch electrode.
Abstract:
A liquid crystal display panel comprise a first substrate, a second substrate and a electrode structure. The electrode structure is disposed on the first substrate. The electrode structure further comprises a first sub-electrode having a first stem electrode with a first end edge and a first branch electrode nearest the first end edge, and a second sub-electrode having a second stem electrode with a second end edge and a second branch electrode nearest the second end edge. The first sub-electrode and the second sub-electrode are adjacent to each other, and the first end edge are adjacent to the second end edge. A first distance between the first end edge and the first branch electrode is different from a second distance between the second end edge and the second branch electrode.
Abstract:
A display panel includes a first substrate, a second substrate and an electrode layer. The first substrate and the second substrate are disposed opposite to each other. The electrode layer is disposed on the first substrate and facing the second substrate, and includes at least a first part and a second part adjacent to the first part. The first part includes a plurality of first branch electrodes disposed along a direction and spaced from each other by a first distance (T). The centers of two adjacent ones of the first branch electrodes are separated by a second distance (P). The first part and the second part have a spacing (S) therebetween. S, T and P satisfy the following equation: 1 2 a · ( b + P · m 2 + 1 4 · T 2 P ) - 1.5 ≤ S ≤ 1 2 a · ( b + P · m 2 + 1 4 · T 2 P ) + 1.5 wherein, a= 1/12, b=¼, m= 1/10, and S, T and P in unit of micrometer.