Abstract:
The service layer may leverage the access network infrastructure so that applications on a device may bootstrap with a machine-to-machine server without requiring provisioning beyond what is already required by the access network.
Abstract:
Devices, computer readable media, and methods for supporting services at an application service layer (ASL) are disclosed. The ASL may be a machine-to-machine (M2M) services capability layer (SCL). Content functions may interpret the data to generate a semantic description of the data. Semantic information associated with data may be stored. Context aware functions may process the semantic description of the data to generate lower level contextual cues. Context aware reasoning functions may process the lower level contextual cues to deduce higher level context. An application or a second ASL may use the contextual cues and the situational context to trigger an action. The ASL may create a trigger condition based on a received message. The ASL may invoke a function based on detecting a trigger condition. The ASL may perform a command based on a received command. The ASL may use a objective function and feedback to control a device.
Abstract:
A wireless transmit/receive unit (WTRU) may communicate using a data flow that is defined according to flow identification information (FII). The WTRU may participate in the transfer of the data flow between access networks of diverse radio access technologies. The WTRU may communicate with a mobility function to obtain access network and mobility policy information. The mobility function may be, for example, an Access Network Discovery Function (ANDSF). The mobility policy information may describe the conditions by which the transfer of data flows between access networks may be permitted.
Abstract:
Systems and/or methods for providing internetworking among application services layers (ASLs) of different network technologies may be provided. For example, a tunnel anchor point (TAP) may be established. The TAP may be configured to enable communication between a local application in the network and a remote application in a different network. At the TAP, an ASL tunnel may be created to the local application in the network to facilitate the communication. Additionally, a message from the local application may be received where at least a portion of the message may be configured to be provided to a remote ASL and the remote application in the different network to which the local application wishes to communicate. At least the portion of the message may be provided to the remote ASL and the remote application in the different network.
Abstract:
A wireless transmit/receive unit (WTRU) may communicate using a data flow that is defined according to flow identification information (FII). The WTRU may participate in the transfer of the data flow between access networks of diverse radio access technologies. The WTRU may communicate with a mobility function to obtain access network and mobility policy information. The mobility function may be, for example, an Access Network Discovery Function (ANDSF). The mobility policy information may describe the conditions by which the transfer of data flows between access networks may be permitted.
Abstract:
The service layer may leverage the access network infrastructure so that applications on a device may bootstrap with a machine-to-machine server without requiring provisioning beyond what is already required by the access network.
Abstract:
Methods and apparatuses for capillary network device registration implemented in a wireless transmit/receive unit (WTRU) are disclosed. Registration or bootstrap messages may be received by a capillary network device where the WTRU acts as a gateway for communication between the capillary device and a network such as a 3GPP network. A capillary network device identifier (CNDID) is sent to the capillary device. A packet data protocol (PDP) context or PDN connection may be established with the network and the CNDID may be sent to a machine type communications (MTC) server. The WTRU may create the registration message, establish a connection with the network, and forward the registration message to the MTC server. Methods and apparatuses implemented in a network are also disclosed for identifying, addressing, and triggering the capillary devices from the MTC server. The trigger message may include fields for group communication, reducing signaling, and enabling charging.
Abstract:
Methods and apparatuses for capillary network device registration implemented in a wireless transmit/receive unit (WTRU) are disclosed. Registration or bootstrap messages may be received by a capillary network device where the WTRU acts as a gateway for communication between the capillary device and a network such as a 3GPP network. A capillary network device identifier (CNDID) is sent to the capillary device. A packet data protocol (PDP) context or PDN connection may be established with the network and the CNDID may be sent to a machine type communications (MTC) server. The WTRU may create the registration message, establish a connection with the network, and forward the registration message to the MTC server. Methods and apparatuses implemented in a network are also disclosed for identifying, addressing, and triggering the capillary devices from the MTC server. The trigger message may include fields for group communication, reducing signaling, and enabling charging.
Abstract:
Systems, methods and apparatus for managing machine-to-machine (M2M) entities are disclosed. Included herein is a method that may include implementing one or more management layers for managing M2M entities in an M2M environment. The method may also include using a plurality of management layers to manage a M2M area network, wherein the M2M area network may include one or more M2M end devices. The M2M end devices may include, for example, an M2M gateway and/or an M2M device. The management layers may include any of an application management layer, service management layer, network management layer and a device management layer. The management layers may provide any of configuration management, fault management, and performance management of the M2M entities.
Abstract:
Methods and apparatuses for capillary network device registration implemented in a wireless transmit/receive unit (WTRU) are disclosed. Registration or bootstrap messages may be received by a capillary network device where the WTRU acts as a gateway for communication between the capillary device and a network such as a 3GPP network. A capillary network device identifier (CNDID) is sent to the capillary device. A packet data protocol (PDP) context or PDN connection may be established with the network and the CNDID may be sent to a machine type communications (MTC) server. The WTRU may create the registration message, establish a connection with the network, and forward the registration message to the MTC server. Methods and apparatuses implemented in a network are also disclosed for identifying, addressing, and triggering the capillary devices from the MTC server. The trigger message may include fields for group communication, reducing signaling, and enabling charging.