Abstract:
A system for controlling a surgical instrument comprises an input device operably coupled to remotely control movement of a surgical instrument operably coupled to a computer-assisted surgical system; a first auxiliary input device configured to transmit an auxiliary function control signal to activate an auxiliary function of a surgical instrument in an operably coupled state of the first auxiliary input device and the surgical instrument. The system further comprises a control system configured to detect at least one of an initial position or a configuration of an input device operably coupled to remotely control movement of the surgical instrument; and operably couple the first auxiliary input device to control the auxiliary function of the surgical instrument based on a position of the first auxiliary input device relative to a second auxiliary input device and the detecting of the at least one of the initial position or configuration of the input device operably coupled to remotely control the movement of the surgical instrument.
Abstract:
A patient side cart for a teleoperated surgical system can include one or more wheels positioned to support the cart for wheeled motion on a ground surface, at least one manipulator portion for holding a surgical instrument, a steering interface having a grasping portion and comprising a sensor positioned to sense turning, fore, and aft forces exerted on the grasping portion to move the cart, wherein the sensor is in signal communication with a drive control system of the patient side cart, and an additional sensor operatively coupled to the drive control system. The additional sensor may be positioned between the steering interface and the wheels on a side of the cart at which the steering interface is positioned, wherein in response to a force exerted on the additional sensor during backward motion of the cart in response to an aft force exerted on the grasping portion, the sensor sends a signal to the drive control system to stop motion of the cart.
Abstract:
A patient side cart for a teleoperated surgical system includes at least one manipulator portion for holding a surgical instrument and a steering interface. The steering interface may include at least one sensor positioned to sense turning, fore, and aft forces exerted by a user to move the cart. The steering interface may further include a coupling mechanism to removably couple the steering interface with the patient side cart. The at least one sensor may be placed in signal communication with a drive control system of the patient side cart when the steering interface is in a coupled state with the patient side cart.
Abstract:
A surgical cart assembly may comprise a base portion; a plurality of wheels coupled to the base portion; a column extending vertically from the base portion; a manipulator arm coupled to an end portion of the column; a stabilization device coupled to the base portion, the stabilization device moveable between a retracted position and a deployed position; an actuation device to cause movement of the stabilization device between the retracted position and the deployed position; and a biasing element coupled to the stabilization device, the biasing element exerting a biasing force to bias the stabilization device toward the retracted position. The stabilization device may comprise a stabilization surface, the stabilization surface contacting the ground surface on which the surgical cart assembly is supported in the deployed position of the stabilization device, and the stabilization surface spaced from the ground surface in the retracted position of the stabilization device.
Abstract:
A patient side cart for a teleoperated surgical system includes at least one manipulator portion for holding a surgical instrument and a steering interface. The steering interface may include at least one sensor positioned to sense turning, fore, and aft forces exerted by a user to move the cart. The steering interface may further include a coupling mechanism to removably couple the steering interface with the patient side cart. The at least one sensor may be placed in signal communication with a drive control system of the patient side cart when the steering interface is in a coupled state with the patient side cart.
Abstract:
A patient side cart for a teleoperated surgical system can include at least one manipulator arm portion for holding a surgical instrument, a steering interface, and a drive system. The steering interface may be configured to detect a force applied by a user to the steering interface indicating a desired movement for the teleoperated surgical system. The drive system can include at least one driven wheel, a control module, and a model section. The control module may receive as input a signal from the steering interface corresponding to the force applied by the user to the steering interface. The control module may be configured to output a desired movement signal corresponding to the signal received from the steering interface. The model section can include a model of movement behavior of the patient side cart, the model section outputting a movement command output to drive the driven wheel.
Abstract:
A surgical cart assembly may comprise a base portion. The base portion also includes a plurality of wheels coupled to the base portion and arranged to permit wheeled movement of the surgical cart assembly. The cart also includes a column extending vertically from the base portion, and a manipulator arm coupled to an end portion of the column opposite to a location of the base portion. The cart further comprises a stabilization assembly coupled to the base portion, the stabilization assembly may include a piston assembly moveable between a retracted position and a deployed position, and an actuation device operably coupled to the piston assembly to actuate the piston assembly between the retracted position and the deployed position. The piston assembly in the retracted position is retracted away from a ground surface on which the cart assembly is supported, and the piston assembly in the deployed position is in contact with the ground surface.
Abstract:
A method of controlling a vibration reduction member of a patient side cart for a teleoperated surgical system includes detecting an occurrence of a first event corresponding to preparation of the patient side cart for a surgical procedure, and issuing a command signal to an actuation device to deploy the vibration reduction member to contact a ground surface upon which the patient side cart is located.
Abstract:
A method includes moving a stabilization device comprising a stabilization surface relative to a base of a surgical cart, wherein the moving comprises moving the stabilization device from a retracted position in which the stabilization surface is spaced from the ground surface to a deployed position in which the stabilization surface is in contact with the ground surface, and wherein the moving comprises overcoming a biasing force biasing the stabilization device toward the retracted position.
Abstract:
A patient side cart for a teleoperated surgical system may include a base, a column connected to the base, a boom connected to the column, a manipulator arm connected to the boom, and a vibration reduction member. The manipulator arm may be configured to support a surgical instrument. The vibration reduction member may be configured to be moved between deployed and retracted positions relative to the base. The vibration reduction member may engage a ground surface in the deployed position and not be in contact with the ground surface in the retracted position. Various exemplary embodiments also relate to carts including a vibration reduction member and methods of controlling a vibration reduction member.