Abstract:
Techniques for input control visualization include a control console. The control console includes a first input control operable by an operator and outside of a field of view of the operator, a display within the field of view of the operator, and one or more sensors. The one or more sensors acquire information about the first input control and a physical environment surrounding the first input control. A representation of the first input control and the physical environment is generated from the information. The representation is displayed on the display.
Abstract:
A robot main body having a robotic arm, a remote control device which includes a robotic arm operational instruction input part installed outside of a working area and by which an operational instruction for the robotic arm is inputted, and a contactless action detecting part configured to detect a contactless action including at least one given operating condition parameter change instructing action by an operator, a control device communicably connected to the remote control device and configured to control operation of the robot main body.
Abstract:
A robot system including a master device configured to receive a manipulating instruction from an operator and transmit the received manipulating instruction as a manipulating input signal, a plurality of slave robots configured to operate according to the manipulating input signal transmitted from the master device, a management control device configured to manage operations of the plurality of slave robots, respectively, and an output device configured to output information transmitted from the management control device. The management control device determines a priority of transmitting the manipulating input signal from the master device to the slave robot among the plurality of slave robots that are in a standby state of the manipulating input signal, and transmits information related to the determined priority to the output device. Thus, the operator is able to efficiently transmit the manipulating input signal to the plurality of slave robots through the master device.
Abstract:
A robot system which includes a manipulator configured to receive a manipulating instruction from an operator, a slave arm having a plurality of joints, and a control device configured to control operation of the slave arm. The control device is configured, while the slave arm is operating at a speed equal to or higher than a first given the threshold, even when an operational instruction value for correcting the operation of the slave arm is inputted from the manipulator during an automatic operation of the slave arm, to prevent the correction of the operation of the slave arm.
Abstract:
A machine has at least one actuated mechanism is remotely located from a control station. A two way real-time communication link connects the machine location with the control station. A controller at the machine location has program code that is configured to determine from data from one or more sensors at the machine location if an actual fault has occurred in the machine when the machine is performing its predetermined function and to determine for an actual fault one or more types for the fault and transmit the one or more fault types to the control station for analysis. The code in the controller is configured to be a preprogrammed trap routine specific to the machine function that is automatically executed when an error in machine operation is detected at the machine location. The controller also has a default trap routine that is executed when the specific routine does not exist.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a robotic surgical system may include detecting a first surgical instrument coupled to a first manipulator interface assembly of a teleoperated surgical system, the manipulator interface assembly being controlled by a first input device; detecting which one of a user's left and right hands operates the first input device; and assigning control of an auxiliary function of the first surgical instrument to a first auxiliary input device disposed in a left position relative to a second auxiliary input device if the user's left hand is detected to operate the first input device, or assigning control of an auxiliary function of the first surgical instrument to a second auxiliary input device disposed in a right position relative to the first auxiliary input device if the user's right hand is detected to operate the first input device. A frame of reference of the left position and right position is relative to a user operating the first input device.
Abstract:
Disclosed are a system for operating a mobile robot based on cleaning area information and a method thereof. A mobile robot based on cleaning area information according to an exemplary embodiment of the present invention includes a memory which stores a plurality of cleaning area information in which at least a part of a cleaning available area is changed; and a controller which controls to select one cleaning area information among the plurality of stored cleaning area information, recognize a position on a cleaning area map which configures the selected cleaning area information and perform cleaning on the cleaning available area from the recognized position.
Abstract:
A synergy-based human-machine interface that uses low-dimensional command signals to control a high dimensional virtual, robotic or paralyzed human hand is provided. Temporal postural synergies are extracted from angular velocities of finger joints of five healthy subjects when they perform hand movements that are similar to activities of daily living. Extracted Synergies are used in real-time brain control, where a virtual, robotic or paralyzed human hand is controlled to manipulate virtual or real world objects.
Abstract:
The invention relates to a telepresence system (1) with a human-machine interface (2), and with a teleoperator (3) designed to communicate bid sectionally with the human-machine interface (2) via a communications channel (4).
Abstract:
The present invention relates to a system and a method for providing safe remote access to a plurality of robot controllers positioned at a local site for a person positioned on a remote site. The system includes a plurality of robot controllers, each capable of receiving credentials and including an authentication component for authentication of the credentials, and an authorization component for handling authorization for access to the robot controller based on the result of the authentication, a remote computer located at a remote site and capable of communicating with the robot controllers and having an interface capable of receiving credentials and configured to send the credentials to the robot controllers, a server component capable of communicating with the robot controllers, and an identifying component positioned at the local site configured to receive proof of local access.