Abstract:
An integrated circuit having an ESD protection structure is described. One embodiment includes a circuit section interconnected with a first terminal and with a second terminal and being operable at voltage differences between the first terminal and second terminal of greater than +10 V and less than −10 V. The integrated circuit additionally includes an ESD protection structure operable to protect the circuit section against electrostatic discharge between the first terminal and the second terminal. The ESD protection structure is operable with voltage differences between the first and second terminals of greater than +10 V and less than −10 V without triggering. The ESD protection structure is electrically and optically coupled to a photon source such that photons emitted by the photon source upon ESD pulse loading are absorbable in the ESD protection structure and an avalanche breakdown is initiatable by electron-hole pairs generated by the absorbed photons.
Abstract:
Driver apparatus for a differential bus and corresponding methodA driver apparatus for a differential bus is provided, having a first transistor and a fourth transistor which are connected in order to drive the bus to a dominant state, and a second transistor and a third transistor which are connected in order to drive the bus to a recessive state. The driver apparatus also comprises a collision detection circuit which is set up to detect a collision state on the bus on the basis of measurements of currents through at least one transistor of the first, second, third and fourth transistors.
Abstract:
A method of triggering avalanche breakdown in a semiconductor device includes providing an electrical coupling and an optical coupling between an auxiliary semiconductor device configured to emit radiation and the semiconductor device including a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer. The electrical and optical coupling includes triggering emission of radiation by the auxiliary semiconductor device and triggering avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device.
Abstract:
A method of triggering avalanche breakdown in a semiconductor device includes providing an electrical coupling and an optical coupling between an auxiliary semiconductor device configured to emit radiation and the semiconductor device including a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer. The electrical and optical coupling includes triggering emission of radiation by the auxiliary semiconductor device and triggering avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device.
Abstract:
In accordance with an embodiment, an integrated driver circuit includes: a first connection and a second connection configured to be connected to a control chip; at least one bus connection configured to be connected to a bus line; and a control circuit. The control circuit is configured to operate in a first mode or a second mode; to output a reception signal at the second connection in the second mode, where the reception signal represents a bus signal received at the bus connection; to assume a state of low power consumption in the first mode; to change from the first mode to the second mode when a first command is detected at the first connection or at the second connection; and to change from the second mode to the first mode when the bus signal does not indicate any data for a predefined period of time.
Abstract:
A driver apparatus for a differential bus is provided, having a first transistor and a fourth transistor which are connected in order to drive the bus to a dominant state, and a second transistor and a third transistor which are connected in order to drive the bus to a recessive state. The driver apparatus also comprises a collision detection circuit which is set up to detect a collision state on the bus on the basis of measurements of currents through at least one transistor of the first, second, third and fourth transistors.
Abstract:
In accordance with an embodiment, a method includes receiving a transmission signal; converting the received transmission signal into a corresponding bus signal by driving an output stage of a transmitter having a plurality of switches, where a switching behavior of the plurality of switches of the output stage is dependent on a parameter set; converting the bus signal into a corresponding reception signal, wherein an edge of the reception signal is delayed by a loop delay relative to a corresponding edge in the transmission signal; determining a measurement value for the loop delay; and altering the parameter set in order to adapt the loop delay.
Abstract:
In accordance with an embodiment, a method includes receiving a transmission signal; converting the received transmission signal into a corresponding bus signal by driving an output stage of a transmitter having a plurality of switches, where a switching behavior of the plurality of switches of the output stage is dependent on a parameter set; converting the bus signal into a corresponding reception signal, wherein an edge of the reception signal is delayed by a loop delay relative to a corresponding edge in the transmission signal; determining a measurement value for the loop delay; and altering the parameter set in order to adapt the loop delay
Abstract:
An electronic circuit includes a transmitter with a first output configured to be connected to a first signal line of a signal bus, a second output configured to be connected to a second signal line of a signal bus, and an input configured to receive an input signal; and a ringing suppression circuit with a third output configured to be connected to the first signal line, and a fourth output configured to be connected to the second signal line. The transmitter is configured to operate in one of a first operating state or a second operating state dependent on the input signal. The ringing suppression circuit is configured to detect a change from the first operating state to the second operating state of the transmitter, and to operate in a ringing suppression mode for a predefined time period in response to detecting the change.
Abstract:
A semiconductor component includes an auxiliary semiconductor device configured to emit radiation. The semiconductor component further includes a semiconductor device. An electrical coupling and an optical coupling between the auxiliary semiconductor device and the semiconductor device are configured to trigger emission of radiation by the auxiliary semiconductor device and to trigger avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device. The semiconductor device includes a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer.